会写Python代码的人工智能Kite宣布支持Linux,“程序猿”要失业了?

作者: 2019-05-09 15:22:55

会写Python代码的人工智能Kite宣布支持Linux,“程序猿”要失业了?

Kite,那个能为“程序猿”们减少写Python代码时的重复劳动的“自动完成AI”,近日宣布,为了回应社区的反馈,它已经添加了对Ubuntu 16.04+、Debian、Fedora、Archlinux、Linux Mint的Linux支持。

现在,在Linux环境中编写代码的Python开发人员可以使用他们喜欢的代码编辑器编写更高效的软件。

Kite 是TEEC天使基金投资项目,名列2016年度最热门新工具前五名 。Kite是一款将人工智能技术应用到开发工具里的应用程序,它可以为用户带来智能补全式的新一代开发体验。

Kite相当于一个人工配对程序员。在编写代码时,它会显示用户使用的库和终端命令的示例文档。 Kite甚至可以自动检测并解决用户的简单的错误和需求,使用户专注编程的整体项目,无需担心细节问题。

“在Kite,我们的目标是帮助开发人员在更短的时间内创建更好的程序,”Kite的首席执行官兼创始人亚当·史密斯(Adam Smith)说。

“Linux受到世界各地程序员的喜爱,所以我们很高兴能够添加Linux支持,使开源开发人员能够使用我们的代码行预测完成技术更快地编写代码。”

在耗资1700万美元的首轮融资之后,Kite推动了AI辅助编程的前沿,它使开发人员可以使用自动完成建议(类似于Gmail中的智能组合)更快地完成Python代码的完整行。

Python程序员可以使用Kite以更少的麻烦构建可转换的应用程序,而不是复制和粘贴StackOverflow,编写样板代码,并反复修改简单的错误。

自从Kite在1月份首次推出新的代码行完成引擎以来,用户在编码时的代码使用完成量增加了一倍。

通过改进其类型推断引擎,允许在名称中间输入补全,Kite将显示给用户的代码补全数量增加了40%。

这使得选择Kite的用户的代码行完成率增至以前的两倍。

Kite在PyCon上发布了支持Linux的新闻,PyCon是最大的Python用户会议,在会上他们展示了开发人员如何使用Kite消除重复工作,并在Windows、Mac和Linux环境中达到编码效率的峰值。

Kite使用来自高阶开发人员的数千个公开可用的代码源来训练它的机器学习模型。

全世界有超过40,000名Python开发人员使用Kite,目前它可用于所有流行的Python编码环境,包括Atom、Pycharm、Sublime Text、Vim和VS代码。

Kite的创始团队由多位毕业于斯坦福,牛津,MIT,伯克利等名校的工程师组成,定位于San Francisco,致力于改变人们开发产品的方式。

不过,“程序猿”们目前并不用担心这种人工智能的出现会让他们失业。目前,能自动完成编程的人工智能通常还只能完成较为简单的任务,所需运行时间也很长,距离能代替人类程序员的程度还有很长的路要走。

Kite并非“独一无二”

以色列初创公司Codota所开发的人工智能辅助编程项目通过在线对接Eclipse这类开源集成开发平台,可以为程序员在编程时实时推荐代码方案,而且可以推荐大段的代码语句,而非只是零散的代码。

搭建Codota的基础代码来自GitHub和StackOverflow等开源平台,Codota的创始人Dror Weiss和Eran Yahav 通过将开源代码注入机器学习模型中,使Codota能够读懂复杂的代码含义。

Google AutoML 系统也能够自主编写机器学习代码,其效率在某种程度上竟然超过了专业的研发工程师。

AutoML更进一步,实现了训练过程的自编码,通过类似Axure的拖拽方式就能完成对话操作。

AutoML 在机器学习系统的编程上,远胜于创造它的研究人员。在某个图像识别任务中,其实现了创纪录的 82% 的准确率。即使在一些复杂的人工智能任务中,其自创建的代码也比人类程序员优越。它可以在图像中标记多个点,准确率达到 42%;作为对比,人类打造的软件只有 39% 。

微软和剑桥2017年发布的论文中也阐述了一个会编程的机器学习系统DeepCoder,能够解决编程比赛所涉及到的基础编程题目。DeepCoder的创造者之一,在剑桥大学参与微软研究项目的 Marc Brockschmidt表示:“该程序最终可以让非编程人员通过向计算机描述自己的程序构想来获得想要的程序。”

DeepCoder所用的技术叫程序合成( program synthesis),通过截取已有软件的代码行来组成新的程序。

来自彭博和英特尔实验室的两位研究人员也号称实现了首个能够自动生成完整软件程序的AI系统“AI Programmer”,这个“AI程序员”利用遗传算法和图灵完备语言,开发的程序理论上能够完成任何类型的任务。

虽然现在AI Programmer生成的程序,复杂程度与人类新手程序员编写的结果相当。但研究人员认为,AI Programmer编写的程序完全可以超越传统范畴,不受人类时间和智慧的局限。

人工智能 机器学习 技术
上一篇:谈谈机器学习与传统编程之间的区别 下一篇:2019中国人工智能产业发展现状及前景趋势
评论
取消
暂无评论,快去成为第一个评论的人吧

更多资讯推荐

机器学习转化为生产力,警惕这4个常见陷阱!

几乎每个人都想在他们的业务中引入机器学习,但是这些人也遇到了一个大问题:让模型可持续发展十分困难,尤其是在云架构的基础上。medium上一位博主也指出了这个问题,并提出了将机器学习模型投入生产的4个常见陷阱。

大数据文摘 ·  13h前
500亿参数,支持103种语言:谷歌推出「全球文字翻译」模型

由于缺乏平行数据,小语种的翻译一直是一大难题。来自谷歌的研究者提出了一种能够翻译 103 种语言的大规模多语言神经机器翻译模型,在数据丰富和匮乏的语种翻译中都实现了显著的性能提升。

机器之心 ·  1天前
对于人工智能的恐惧及其5个解决方法

实施人工智能技术的IT领导人可能会感到一些恐惧,这有着充分的理由。人工智能在拥有数十年发展和应用历史的同时却有着奇怪的定位,但对于许多人来说,人工智能仍然是一种未来主义的感觉。

Kevin Casey ·  1天前
机器学习免费跑分神器:集成各大数据集,连接GitHub就能用

搞机器学习的小伙伴们,免不了要在各种数据集上,给AI模型跑分。现在,Papers with Code (那个以论文搜代码的神器) 团队,推出了自动跑分服务,名叫sotabench,以跑遍所有开源模型为己任。

栗子 鱼羊 ·  1天前
用AI实现动画角色的姿势迁移,Adobe等提出新型「木偶动画」

近日,Adobe 和康奈尔大学的研究人员提出一种基于学习的动画制作方法——基于卡通角色的少量图像样本就可生成新动画。

机器之心 ·  1天前
AI新贵登上胡润百富榜:“CV四小龙”三家创始人上榜

AI造福人类,也造富了一些创业者。最近公布的2019胡润百富榜就是窥探老板们身价的好机会。

郭一璞 ·  1天前
大数据为什么不够聪明?机器要如何走向强人工智能

大数据为什么不够聪明?比概率语言更强大的思考工具是什么?科幻电影中的强人工智能到底怎样实现?如何让智能机器像人一样思考?搞清楚因果关系才能拨云见日。

明日情报 ·  1天前
2019机器学习框架之争:与Tensorflow竞争白热化,进击的PyTorch赢在哪里?

2019年,机器学习框架之争进入了新阶段:PyTorch与TensorFlow成为最后两大玩家,PyTorch占据学术界领军地位,TensorFlow在工业界力量依然强大,两个框架都在向对方借鉴,但是都不太理想。

大数据文摘 ·  2天前
Copyright©2005-2019 51CTO.COM 版权所有 未经许可 请勿转载