微软开源可解释机器学习工具包lnterpretML

作者: 雷锋网 2019-05-13 09:22:21

 

【 图片来源:Microsoft Research Blog  所有者:Microsoft Research Blog 】

人类创造出人工智能,并且被人工智能影响着自己的生活。如果人工智能的行为具有可理解性,那么人类可以更进一步地利用人工智能。近期,微软研究院就机器学习的可理解性发表了相关文章,雷锋网全文编译如下。

当人工智能系统能够影响人类生活时,人们对它的行为理解是非常重要的。通过理解人工智能系统的行为,数据科学家能够适当地调试它们的模型。如果能够解释模型的行为原理,设计师们就能够向最终用户传递这些信息。如果医生、法官或者其它决策制定者相信这个强化智能系统的模型,那他们就可以作出更好的决策。更广泛的讲,随着模型的理解更加全面,最终用户可能会更快接受由人工智能驱动的产品和解决方案,同时,也可能更容易满足监管机构日益增长的需求。

事实上,要实现可理解性是复杂的,它高度依赖许多变量和人为因素,排除了任何“一刀切”的方法。可理解性是一个前沿的、跨学科的研究领域,它建立在机器学习、心理、人机交互以及设计的思想上。

微软研究院这些年一直致力于研究如何创造出具有可理解性的人工智能,如今,如今微软在MIT开源协议下开源了lnterpretML软件工具包,开源地址是 https://github.com/Microsoft/interpret,它将使开发人员能够尝试各种方法去解释模型和系统。InterpretML能够执行许多可理解的模型,包括可解释的Boosting Machine(相对于一般的加性模型做了改进),以及为黑箱模型的行为或者它们的个别预测生成解释的几种方法。

通过一些简单的方式去评估可理解性方法,开发人员就能够比较不同方法产生的解释,从而去选择那些最符合他们需求的方法。例如,通过检查方法之间的一致性,这样一来,比较法就能够帮助数据科学家去了解在多大程度上相信那些解释。

微软正期待与开源社区合作,继续开发InterpretML,开源地址是https://github.com/Microsoft/interpret

本文转自雷锋网,如需转载请至雷锋网官网申请授权。

微软 开源 机器学习
上一篇:人脑连接互联网,请慎之又慎 下一篇:生成式对抗网络(GANs)的七大未解之谜
评论
取消
暂无评论,快去成为第一个评论的人吧

更多资讯推荐

高位截瘫患者重新行走:靠意念指挥外骨骼,法国脑机接口新突破 精选

依靠介入头部的 2 个传感器,法国里昂的一名瘫痪男子 Thibault 实现了操控外骨骼装备来助力行走。

孙滔 ·  1天前
2008 年预测 2020 年生活方式:基本都实现了

美国皮尤研究中心曾在 2008 年预测 2020 年的生活方式,目前来看,该研究的预测基本已经实现。而对于未来 10 年,也就是 2030 年左右人们的生活,在 2017 年底的世界经济论坛上,800 多名信息和通讯技术领域的技术高管和专家给出了如下预测。

佚名 ·  1天前
机器学习的正则化是什么意思?

正则化的好处是当特征很多时,每一个特征都会对预测y贡献一份合适的力量;所以说,使用正则化的目的就是为了防止过拟合。

佚名 ·  1天前
机器学习的正则化是什么意思?

正则化的好处是当特征很多时,每一个特征都会对预测y贡献一份合适的力量;所以说,使用正则化的目的就是为了防止过拟合。

佚名 ·  1天前
为什么我的CV模型不好用?没想到原因竟如此简单……

机器学习专家 Adam Geitgey 近日发布了一篇文章探讨了这一简单却又让很多人头痛的问题,并分享了他为解决这一问题编写的自动图像旋转程序。

机器之心 ·  1天前
机器学习与预测分析的区别在何处? 精选

如今,认知学习的应用比以往更为普遍。通常意义上讲,认知学习与认知计算就是涉及AI技术与信号处理的操作过程或技术平台。

读芯术 ·  2天前
大盘点:8月Github上7个值得关注的数据科学项目

本文带你来看看GitHub上创建于2019年8月的7个数据科学项目。笔者所选项目的范围十分广泛,涉及从机器学习到强化学习的诸多领域。

读芯术 ·  2天前
非监督学习最强攻略

本次主要讲解的内容是机器学习里的非监督学习经典原理与算法,非监督,也就是没有target(标签)的算法模型。

SAMshare ·  2天前
Copyright©2005-2019 51CTO.COM 版权所有 未经许可 请勿转载