不懂卷积神经网络?别怕,看完这几张萌图你就明白了!

作者: 佚名 2019-05-17 15:48:16

这篇文章用最简明易懂的方式解释了卷积神经网络(CNN)的基本原理,并绕开了里面的数学理论。

同时,如果想对从头开始构建CNN网络之类的问题感兴趣,作者推荐去读《 Artificial Intelligence for Humans Volume 3: Deep Learning and Neural Networks》中第10章节的内容。

不多说了,开始CNN之旅——

网络结构

CNN的模型通常建立在前馈神经网络模型之上,它的结构你也应该不陌生。不同是的,“隐藏层”将被以下这些层取代:

  • 卷积层(Convolutional Layers)
  • 池化层(Pooling Layers)

全连接层(稠密层,Dense Layers)

结构类似下图:

卷积

在此阶段,输入图像被一个grid扫描,并作为输入传递到网络。之后,这个网络将一层卷积层应用于输入的图像,将它分割成包含3张图像的三维立方体结构。这3三张图像个框架分别呈现原图的红色、绿色和蓝色信息。

随后,它将卷积滤波器(也称神经元)应用到图像中,和用PhotoShop中的滤镜突出某些特征相似。例如在动画片《Doc And Mharti》中,用罗伯茨交叉边缘增强滤波器处理过的效果如下图所示:

原图

处理后

可以想象,拥有100多个不同滤波器的神经网络筛选复杂特征的能力有多强大,这将大大助力它识别现实世界中事物。一旦神经网络已经将卷积滤波器应用到图像中,我们就能得到特征/激活图。

特征图谱会被指定区域内的特定神经元激活,比如我们将边缘检测滤波器添加到下面左图中,则它的激活图如右图所示:

这些点代表0的行(表明这些区域可能是边缘)。在二维数组中,“30”的值表明图像区域存在边缘的可能性很高。

激活层

当我们有了激活图,就能在其中让激活函数大显身手了,我们用研究人员的***函数——ReLU激活函数(修正线性单元)举个例子。然而,一些研究人员仍然认为用Sigmoid函数或双曲切线能得到提供***的训练结果,但我不这么认为。

使用激活层是在系统中引入非线性,这样可以提高输入和输出的一般性。ReLU(x)函数只返回max(0、x)或简单地返回激活图中的负权值。

池化层

之后的***做法通常是在特征图中应用***池化(或任何其他类型的池)。应用***池化层的原理是扫描小型grid中的图像,用一个包含给定grid中***值的单个单元替换每个grid:

这样做的重要原因之一是,一旦我们知道给定特征在一个给定的输入区域,我们可以忽略特征的确切位置将数据普遍化,减少过拟合。举个例子,即使训练精度达到99%,但拿到没见过的新数据上测试时,它的精确度也只有50%。

输出层

***池化层后我们讲讲剩下的另一个激活图,这是传递给全连接网络的一部分信息。它包含一个全连接层,将上一层中每个神经元的输出简单映射到全连接层的一个神经元上,并将softmax函数应用到输出中,就是和我们之前提到的ReLU函数类似的激活函数。

因为我们将用神经网络将图片分类,因此这里使用了softmax函数。softmax输出返回列表的概率求和为1,每个概率代表给定图像属于特定输出类的概率。但后来涉及到图像预测和修复任务时,线性激活函数的效果就比较好了。

值得注意的是,讲到这里我们只考虑了单卷积层和单池层的简单情况,如果要实现***精度通常需要它们多层堆叠。经过每个完整的迭代后,通过网络反向根据计算损失更新权重。

神经网络 卷积神经网络 人工智能
上一篇:AI进入无障碍时代:手语识别翻译的应用,究竟意味着什么? 下一篇:蚂蚁金服开源机器学习工具SQLFlow,机器学习比SQL还简单
评论
取消
暂无评论,快去成为第一个评论的人吧

更多资讯推荐

12个场景应用,百余种算法,AI是如何攻占经济学的?

在虚拟世界中模拟现实经济状况,想法设计更好的制度只是AI和经济学结合方式之一。其实深度强化学习在面临风险参数和不确定性不断增加的现实经济问题时,也可以提供更好的性能和更高的精度。

蒋宝尚 ·  1天前
你在打王者农药,有人却用iPhone来训练神经网络

在 iOS 设备上也可以直接训练 LeNet 卷积神经网络,而且性能一点也不差,iPhone 和 iPad 也能化为实实在在的生产力。

佚名 ·  1天前
未来20年,全自动驾驶和互联汽车会出现吗?

在这篇博文中,重点介绍了汽车技术如何使交通更安全、更智能、更有趣。

Huibert Verhoeven ·  1天前
AI、机器学习和深度学习是 OEM 的主要市场

人工智能(AI)正在迅速改变全球行业参与者的经营方式。人工智能(AI)正在迅速改变全球行业参与者的经营方式。随着人工智能在商业和商业领域的广泛应用,我们看到了从更智能的产品到专注于聚焦客户服务的一切演变。

佚名 ·  1天前
和AI去码一样神奇?AI上色是黑科技还是逗你玩

在图片处理领域这块,AI 刷的存在感越来越多。早前笔者就介绍过 AI 无损放大图片、AI 去除马赛克、AI 自动给线稿上色之类的玩法,现在,又有人给笔者推荐了一个 AI 黑科技——黑白照片一键变彩色。

Aimo ·  1天前
AI与IoT:两种强大的技术将如何改变未来商业模式

人工智能和物联网正在重新定义企业过去的执行方式。在无人驾驶无人机和机器学习开始普及之前,詹姆斯·卡梅隆(James Cameron)于1984年通过他的梦想项目《终结者》(The Terminator)吸引了全世界的目光。

佚名 ·  1天前
为什么AI没能让人类失业?

我们听了这么久有关「AI取代设计师」、「AI取代写作者」、「AI取代画家」、「AI取代司机」……的论调。然而时至今日,我们发现实际上,目前还没有一个职业「真正」被取代。

佚名 ·  1天前
轻松构建 PyTorch 生成对抗网络(GAN)

生成对抗网络(GAN)是一种生成式机器学习模型,它被广泛应用于广告、游戏、娱乐、媒体、制药等行业,可以用来创造虚构的人物、场景,模拟人脸老化,图像风格变换,以及产生化学分子式等等。

佚名 ·  1天前
Copyright©2005-2020 51CTO.COM 版权所有 未经许可 请勿转载