解析人脸识别系统的技术流程

作者: 人工智能小破孩 2019-06-25 13:47:50

人脸识别,是基于人的脸部特征信息进行身份识别的一种生物识别技术。用摄像机或摄像头采集含有人脸的图像或视频流,并自动在图像中检测和跟踪人脸,进而对检测到的人脸进行脸部的一系列相关技术,通常也叫做人像识别、面部识别。

解析人脸识别系统的技术流程

人脸识别系统的研究始于20世纪60年代,80年代后随着计算机技术和光学成像技术的发展得到提高,而真正进入初级的应用阶段则在90年后期,并且以美国、德国和日本的技术实现为主;人脸识别系统成功的关键在于是否拥有***的核心算法,并使识别结果具有实用化的识别率和识别速度;“人脸识别系统”集成了人工智能、机器识别、机器学习、模型理论、专家系统、视频图像处理等多种专业技术,同时需结合中间值处理的理论与实现,是生物特征识别的***应用,其核心技术的实现,展现了弱人工智能向强人工智能的转化。

解析人脸识别系统的技术流程

人脸识别系统主要包括四个组成部分,分别为:人脸图像采集及检测、人脸图像预处理、人脸图像特征提取以及匹配与识别。

人脸图像采集及检测

人脸图像采集:不同的人脸图像都能通过摄像镜头采集下来,比如静态图像、动态图像、不同的位置、不同表情等方面都可以得到很好的采集。当用户在采集设备的拍摄范围内时,采集设备会自动搜索并拍摄用户的人脸图像。

人脸检测:人脸检测在实际中主要用于人脸识别的预处理,即在图像中准确标定出人脸的位置和大小。人脸图像中包含的模式特征十分丰富,如直方图特征、颜色特征、模板特征、结构特征及Haar特征等。人脸检测就是把这其中有用的信息挑出来,并利用这些特征实现人脸检测。

主流的人脸检测方法基于以上特征采用Adaboost学习算法,Adaboost算法是一种用来分类的方法,它把一些比较弱的分类方法合在一起,组合出新的很强的分类方法。

人脸检测过程中使用Adaboost算法挑选出一些最能代表人脸的矩形特征(弱分类器),按照加权投票的方式将弱分类器构造为一个强分类器,再将训练得到的若干强分类器串联组成一个级联结构的层叠分类器,有效地提高分类器的检测速度。

人脸图像预处理

人脸图像预处理:对于人脸的图像预处理是基于人脸检测结果,对图像进行处理并最终服务于特征提取的过程。系统获取的原始图像由于受到各种条件的限制和随机干扰,往往不能直接使用,必须在图像处理的早期阶段对它进行灰度校正、噪声过滤等图像预处理。对于人脸图像而言,其预处理过程主要包括人脸图像的光线补偿、灰度变换、直方图均衡化、归一化、几何校正、滤波以及锐化等。

人脸图像特征提取

人脸图像特征提取:人脸识别系统可使用的特征通常分为视觉特征、像素统计特征、人脸图像变换系数特征、人脸图像代数特征等。人脸特征提取就是针对人脸的某些特征进行的。人脸特征提取,也称人脸表征,它是对人脸进行特征建模的过程。人脸特征提取的方法归纳起来分为两大类:一种是基于知识的表征方法;另外一种是基于代数特征或统计学习的表征方法。

基于知识的表征方法主要是根据人脸器官的形状描述以及他们之间的距离特性来获得有助于人脸分类的特征数据,其特征分量通常包括特征点间的欧氏距离、曲率和角度等。人脸由眼睛、鼻子、嘴、下巴等局部构成,对这些局部和它们之间结构关系的几何描述,可作为识别人脸的重要特征,这些特征被称为几何特征。基于知识的人脸表征主要包括基于几何特征的方法和模板匹配法。

人脸图像匹配与识别

人脸图像匹配与识别:提取的人脸图像的特征数据与数据库中存储的特征模板进行搜索匹配,通过设定一个阈值,当相似度超过这一阈值,则把匹配得到的结果输出。人脸识别就是将待识别的人脸特征与已得到的人脸特征模板进行比较,根据相似程度对人脸的身份信息进行判断。这一过程又分为两类:一类是确认,是一对一进行图像比较的过程,另一类是辨认,是一对多进行图像匹配对比的过程。

人脸识别 AI 人工智能
上一篇:Web攻击检测的机器学习深度实践 下一篇:当热钱不再涌动 2019人工智能行业冷暖观察
评论
取消
暂无评论,快去成为第一个评论的人吧

更多资讯推荐

德媒:欧盟拟立法限制滥用人工智能

据德国《法兰克福汇报》网站4月13日报道,人工智能的胜利前进已不可阻挡。新冠疫情尤其让人们关注到这种拥有自我学习能力的系统对医疗体系组织工作的价值。

参考消息 ·  8h前
国内首个!北京拟推进自动驾驶商业化,年内将实现真无人驾驶

乘自动驾驶出租车要付费,无人配送车街上跑,路测拿掉安全员,无人驾驶车上高速……这些即将在北京实现。

南方都市报 ·  9h前
前沿洞察丨无人机送货不迷路的原因竟在这里!

本期前沿洞察为大家带来这些技术:用微观交叉定位,让无人机送货不再找路难;能暴露行动轨迹的智能袜子;基于两束交叉光触发的化学反应实现微米级高精度3D打印......一起来看看吧!

望潮科技 ·  9h前
2021年AI智能摄像机带来的新市场

大流行除了给全球经济带来巨大影响之外,也加速了越来越多的先进技术走向成熟应用,如人工智能(AI)和机器学习(ML),技术时代的到来往往伴随着人类的迫切需求。

蒙光伟 ·  19h前
OpenAI CEO Sam Altman:AI革命即将到来,我们需要新的系统

我们正处于这场技术变革的开端,我们拥有创造未来的宝贵机会。而这不是简单地解决目前的社会和政治问题,它必须为完全不同的社会而设计。

Sam Altman ·  20h前
谈谈基于深度学习的目标检测网络为什么会误检,以及如何优化目标检测的误检问题

在训练人脸检测网络时,一般都会做数据增强,为图像模拟不同姿态、不同光照等复杂情况,这就有可能产生过亮的人脸图像,“过亮”的人脸看起来就像发光的灯泡一样。

刘冲 ·  21h前
值得思考:197亿美金,微软2021年的AI转型之路

4月12日,微软宣布将以每股56美元的价格收购语音识别巨头Nuance,出价达到了197亿美元。

东方林语 ·  22h前
人工智能优先战略将从哪里开始?

人工智能可以为企业带来竞争优势,并释放难以获得的巨大商机。因此,人们需要了解制定有效的人工智能优先策略的6个步骤。

李睿 ·  22h前
Copyright©2005-2021 51CTO.COM 版权所有 未经许可 请勿转载