「决战紫禁之巅」之深度学习框架篇:Keras VS PyTorch

作者: 机器之心 2019-06-26 05:29:44

TensorFlow 是很多科学家、工程师和开发人员的***深度学习框架。虽然 TensorFlow 1.0 早在 2017 年 2 月就发布了,但使用过程中对用户不太友好。

过去几年里,Keras 和 PyTorch 日益成为广受用户欢迎的两种深度学习库,因为它们使用起来比 TensorFlow 简单多了。

本文将分别对 Keras 和 PyTorch 的四个方面进行比较,你可以根据两种框架的优劣势以及自身的需要选择其中一种。

一、Keras 和 PyTorch 简介

Keras 于 2015 年 3 月***发布,是能够在 TensorFlow、CNTK、Theano 或 MXNet 上运行的高级 API(或作为 TensorFlow 内的 tf.contrib)。Keras 的突出特点在于其易用性,它是迄今为止最容易上手且能够快速运行的框架。此外,Keras 能够直观地定义神经网络,函数式 API 的使用令用户可以将层定义为函数。

PyTorch 于 2016 年 10 月发布,由 Facebook AI 研究团队开发,是专注于直接处理数组表达式的较低级别 API。与 Keras 相比,你能够拥有更强的灵活度以及对 PyTorch 的控制,同时又不需要进行太多的声明式编程(declarative programming)。

二、选择 Keras 还是 PyTorch?

有时,深度学习从业者会纠结于应该使用哪一种框架,这通常取决于个人喜好。下面将介绍 Keras 和 PyTorch 的几个方面对比,你可据此做出自己的选择。

1. 定义模型的类 vs 函数

Keras 在定义深度学习模型时提供函数式 API。通过函数式 API,神经网络被定义为一组序列函数,然后一个接一个地得到应用。例如,函数定义层 1 的输出是函数定义层 2 的输入。

在使用 PyTorch 时,用户将神经网络设置为一个扩展了 Torch 库中 torch.nn. 模块的类。与 Keras 类似,PyTorch 为用户提供作为组件的层,但由于这些层属于 Python 类,所以它们是类__init__() 方法中的引用,并通过类的 forward() 方法执行。

相比而言,PyTorch 能够令你访问 Python 的所有类别特征,而不只是简单的函数调用。定义网络变得更加清晰,而且优雅。但如果你认为以最快的速度编写网络代码最为重要,则 Keras 对你来说更加易于使用。

2. 张量和计算图 vs 标准阵列

对于一般程序员来说,Keras API 会隐藏大量的混乱细节,定义网络层也非常直观。因而,你在默认设置下就足以入门。但当你想要实现一个非常先进或「独特的」模型时,才真正需要深入了解低级和本质的 TensorFlow。

但当你真正深入了解低级 TensorFlow 代码时,就会遇到一些挑战。你需要确保所有矩阵乘法对齐。更不要想着将层输出打印出来了,因为你会在终端上打印出一个很好的张量定义(Tensor definition)。

相较于 Keras,PyTorch 在这些方面往往更加宽容。你只需要了解每个层的输入和输出大小就可以了,并且 PyTorch 在这一点上做得非常好,你可以快速掌握。你不需要构建抽象的计算图(其内部情况你在调试时无法看到)。

PyTorch 的另一个优点在于其平滑性(smoothness),你可以在 Torch 张量和 Numpy 矩阵之间来回切换。但如果开发者需要实现一些自定义内容,则 TF 张量和 Numpy 矩阵之间的切换可能会很麻烦,这要求他们对 TensorFlow 有一个透彻了解。

实际上,PyTorch 的交互运算更加简单,两步即可:将 Torch 张量(变量对象)转换成 Numpy,然后进行反向运算即可。

当然,如果你不需要实现任何独特的内容,则 Keras 也表现的非常好,因为你不会遇到任何 TensorFlow 障碍。但如果想要实现一些独特的内容,则 PyTorch 可能会表现得更加平滑。

3. 训练模型

开始训练

利用 Keras 训练模型超级简单!只需要一个简单的.fit(),你就可以开启模型训练之旅。

而利用 PyTorch 训练模型包含以下几个步骤:

  • 每一批次的训练开始时初始化梯度
  • 在模型中运行前向传播
  • 运行后向传播
  • 计算损失和更新权重

所以,就训练模型来说,PyTorch 较为繁琐。

4. 控制 CPU vs GPU 模式

我们需要更多算力。

如果你已经安装了 tensorflow-gpu,则在 Keras 中能够使用 GPU 并且会默认完成。然后,如果你想要将某些运算转移至 CPU,则可以以单行方式完成。

但对于 PyTorch 来说,你必须显式地为每个 torch 张量和 numpy 变量启动 GPU。这样代码会比较混乱。并且如果你想在 CPU 和 GPU 之间来回移动以执行不同运算,则很容易出错。

例如,为了将之前的模型转移到 GPU 上运行,则需要以下步骤:

因而,Keras 在简洁性和默认设置方面优于 PyTorch。

三、选择 Keras 或 PyTorch 的一般性建议

作者通常建议初学者从 Keras 开始。Keras 绝对是理解和使用起来最简单的框架,能够很快地上手运行。你完全不需要担心 GPU 设置、处理抽象代码以及其他任何复杂的事情。你甚至可以在不接触任何 TensorFlow 单行代码的情况下,实现自定义层和损失函数。

但如果你开始深度了解到深度网络的更细粒度层面或者正在实现一些非标准的事情,则 PyTorch 是你的***库。使用 PyTorch 需要进行一些额外操作,但这不会减缓你的进程。你依然能够快速实现、训练和测试网络,并享受简单调试带来的额外益处。

参考链接:https://towardsdatascience.com/keras-vs-pytorch-for-deep-learning-a013cb63870d

【本文是51CTO专栏机构“机器之心”的原创译文,微信公众号“机器之心( id: almosthuman2014)”】

戳这里,看该作者更多好文

深度学习 Keras PyTorch
上一篇:车联网频率三年免费 自动驾驶产业化提速 下一篇:机器人如何扩展物联网应用的范围
评论
取消
暂无评论,快去成为第一个评论的人吧

更多资讯推荐

用PyTorch实现一个简单的分类器

这篇文章我们先考虑在一个自己定义的简单数据集上实现分类,这样子可以最简单的了解一个神经网络的模型,如何用 pytorch 搭建起来。

佚名 ·  15h前
了解有关符号人工智能,象征性AI的好处和局限性

如今,人工智能主要是关于人工神经网络和深度学习。但这并非总是如此。实际上,在过去的十年中,该领域大部分都由象征性人工智能主导,也被称为“经典AI”,“基于规则的AI”和“老式的AI”。

AI国际站 ·  18h前
人工智能在半导体市场的发展潜力及其意义

IHSMarkit在本周发布的一项人工智能应用调查中预测,到2025年,人工智能应用将从2019年的428亿美元激增至1289亿美元。

佚名 ·  3天前
2020年第一季度人工智能的最新进展

人工智能曾经只是科幻小说,是计算世界的遥不可及的梦想,如今已成为现实。 人工智能,简称AI,是用来描述机器模拟人类智能的能力。

闻数起舞 ·  4天前
12个场景应用,百余种算法,AI是如何攻占经济学的?

在虚拟世界中模拟现实经济状况,想法设计更好的制度只是AI和经济学结合方式之一。其实深度强化学习在面临风险参数和不确定性不断增加的现实经济问题时,也可以提供更好的性能和更高的精度。

蒋宝尚 ·  2020-05-28 16:04:02
用Keras来理解状态LSTM递归神经网络

在本教程中,我们将开发和对比许多不同的LSTM递归神经网络模型。一起来看一下。

沂水寒城 ·  2020-05-27 11:10:54
机器学习算法集锦:从贝叶斯到深度学习及各自优缺点

本文筛选并简单介绍了一些最常见算法类别,还为每一个类别列出了一些实际的算法并简单介绍了它们的优缺点。

佚名 ·  2020-05-21 14:50:37
用TFserving部署深度学习模型

本文介绍了TFserving部署线上推理服务,从模型的转换,部署启动和调用推理,欢迎交流,希望对你有帮助。

佚名 ·  2020-05-21 14:05:17
Copyright©2005-2020 51CTO.COM 版权所有 未经许可 请勿转载