「决战紫禁之巅」之深度学习框架篇:Keras VS PyTorch

作者: 机器之心 2019-06-26 05:29:44

TensorFlow 是很多科学家、工程师和开发人员的***深度学习框架。虽然 TensorFlow 1.0 早在 2017 年 2 月就发布了,但使用过程中对用户不太友好。

过去几年里,Keras 和 PyTorch 日益成为广受用户欢迎的两种深度学习库,因为它们使用起来比 TensorFlow 简单多了。

本文将分别对 Keras 和 PyTorch 的四个方面进行比较,你可以根据两种框架的优劣势以及自身的需要选择其中一种。

一、Keras 和 PyTorch 简介

Keras 于 2015 年 3 月***发布,是能够在 TensorFlow、CNTK、Theano 或 MXNet 上运行的高级 API(或作为 TensorFlow 内的 tf.contrib)。Keras 的突出特点在于其易用性,它是迄今为止最容易上手且能够快速运行的框架。此外,Keras 能够直观地定义神经网络,函数式 API 的使用令用户可以将层定义为函数。

PyTorch 于 2016 年 10 月发布,由 Facebook AI 研究团队开发,是专注于直接处理数组表达式的较低级别 API。与 Keras 相比,你能够拥有更强的灵活度以及对 PyTorch 的控制,同时又不需要进行太多的声明式编程(declarative programming)。

二、选择 Keras 还是 PyTorch?

有时,深度学习从业者会纠结于应该使用哪一种框架,这通常取决于个人喜好。下面将介绍 Keras 和 PyTorch 的几个方面对比,你可据此做出自己的选择。

1. 定义模型的类 vs 函数

Keras 在定义深度学习模型时提供函数式 API。通过函数式 API,神经网络被定义为一组序列函数,然后一个接一个地得到应用。例如,函数定义层 1 的输出是函数定义层 2 的输入。

在使用 PyTorch 时,用户将神经网络设置为一个扩展了 Torch 库中 torch.nn. 模块的类。与 Keras 类似,PyTorch 为用户提供作为组件的层,但由于这些层属于 Python 类,所以它们是类__init__() 方法中的引用,并通过类的 forward() 方法执行。

相比而言,PyTorch 能够令你访问 Python 的所有类别特征,而不只是简单的函数调用。定义网络变得更加清晰,而且优雅。但如果你认为以最快的速度编写网络代码最为重要,则 Keras 对你来说更加易于使用。

2. 张量和计算图 vs 标准阵列

对于一般程序员来说,Keras API 会隐藏大量的混乱细节,定义网络层也非常直观。因而,你在默认设置下就足以入门。但当你想要实现一个非常先进或「独特的」模型时,才真正需要深入了解低级和本质的 TensorFlow。

但当你真正深入了解低级 TensorFlow 代码时,就会遇到一些挑战。你需要确保所有矩阵乘法对齐。更不要想着将层输出打印出来了,因为你会在终端上打印出一个很好的张量定义(Tensor definition)。

相较于 Keras,PyTorch 在这些方面往往更加宽容。你只需要了解每个层的输入和输出大小就可以了,并且 PyTorch 在这一点上做得非常好,你可以快速掌握。你不需要构建抽象的计算图(其内部情况你在调试时无法看到)。

PyTorch 的另一个优点在于其平滑性(smoothness),你可以在 Torch 张量和 Numpy 矩阵之间来回切换。但如果开发者需要实现一些自定义内容,则 TF 张量和 Numpy 矩阵之间的切换可能会很麻烦,这要求他们对 TensorFlow 有一个透彻了解。

实际上,PyTorch 的交互运算更加简单,两步即可:将 Torch 张量(变量对象)转换成 Numpy,然后进行反向运算即可。

当然,如果你不需要实现任何独特的内容,则 Keras 也表现的非常好,因为你不会遇到任何 TensorFlow 障碍。但如果想要实现一些独特的内容,则 PyTorch 可能会表现得更加平滑。

3. 训练模型

开始训练

利用 Keras 训练模型超级简单!只需要一个简单的.fit(),你就可以开启模型训练之旅。

而利用 PyTorch 训练模型包含以下几个步骤:

  • 每一批次的训练开始时初始化梯度
  • 在模型中运行前向传播
  • 运行后向传播
  • 计算损失和更新权重

所以,就训练模型来说,PyTorch 较为繁琐。

4. 控制 CPU vs GPU 模式

我们需要更多算力。

如果你已经安装了 tensorflow-gpu,则在 Keras 中能够使用 GPU 并且会默认完成。然后,如果你想要将某些运算转移至 CPU,则可以以单行方式完成。

但对于 PyTorch 来说,你必须显式地为每个 torch 张量和 numpy 变量启动 GPU。这样代码会比较混乱。并且如果你想在 CPU 和 GPU 之间来回移动以执行不同运算,则很容易出错。

例如,为了将之前的模型转移到 GPU 上运行,则需要以下步骤:

因而,Keras 在简洁性和默认设置方面优于 PyTorch。

三、选择 Keras 或 PyTorch 的一般性建议

作者通常建议初学者从 Keras 开始。Keras 绝对是理解和使用起来最简单的框架,能够很快地上手运行。你完全不需要担心 GPU 设置、处理抽象代码以及其他任何复杂的事情。你甚至可以在不接触任何 TensorFlow 单行代码的情况下,实现自定义层和损失函数。

但如果你开始深度了解到深度网络的更细粒度层面或者正在实现一些非标准的事情,则 PyTorch 是你的***库。使用 PyTorch 需要进行一些额外操作,但这不会减缓你的进程。你依然能够快速实现、训练和测试网络,并享受简单调试带来的额外益处。

参考链接:https://towardsdatascience.com/keras-vs-pytorch-for-deep-learning-a013cb63870d

【本文是51CTO专栏机构“机器之心”的原创译文,微信公众号“机器之心( id: almosthuman2014)”】

戳这里,看该作者更多好文

深度学习 Keras PyTorch
上一篇:车联网频率三年免费 自动驾驶产业化提速 下一篇:机器人如何扩展物联网应用的范围
评论
取消
暂无评论,快去成为第一个评论的人吧

更多资讯推荐

2020年搞深度学习需要什么样的GPU:请上48G显存

在 lambda 最新的一篇显卡横向测评文章中,开发者们探讨了哪些 GPU 可以再不出现内存错误的情况下训练模型。当然,还有这些 GPU 的 AI 性能。

机器之心 ·  1天前
一个案例掌握深度学习

近期我们将连载一个深度学习专题,由百度深度学习技术平台部主任架构师毕然分享,让你快速入门深度学习,参与到人工智能浪潮中。

佚名 ·  2020-02-12 17:10:54
20条理由告诉你,为什么当前的深度学习成了人工智能的死胡同?

在深度学习刚刚进入视线时,大多数AI研究人员嗤之以鼻,但短短几年后,它的触角已经横跨医疗、教育、汽车等众多领域。

AI科技评论 ·  2020-02-10 13:36:30
2020,人工智能和深度学习未来的五大趋势

虽然近年来人工智能经常成为热门议题,但它还远未实现真正的成就。人工智能技术发展的主要障碍在于投资成本,投资成本影响短期内的回报。而当时机成熟时,投资AI的公司却可以获得巨大的回报。在最近的一份报告中,麦肯锡预测人工智能领头企业未来将会实现现金流翻倍。

CSDN App ·  2020-02-09 17:27:29
深度学习火了那么多年,到底怎么搞?使用Numpy快速入门

近期我们将连载一个深度学习专题,由百度深度学习技术平台部主任架构师毕然分享,让你快速入门深度学习,参与到人工智能浪潮中。

佚名 ·  2020-02-05 11:25:29
请别再把深度学习与机器学习混为一谈了!

虽说机器学习和深度学习都能发现数据中的模式与特征,但是它们所涉及到的技术和具体的应用场景却截然不同。

陈峻 ·  2020-02-05 09:00:00
OpenAI全面拥抱PyTorch,TensorFlow:我哪里比不上它?

TensorFlow 和 PyTorch 框架之争由来已久,近日的一则新闻让 PyTorch 阵营「更添一员大将」。

一鸣 ·  2020-02-03 09:20:43
构建生产机器学习系统的一些考虑

这篇文章介绍了为生产系统构建机器学习过程的很多方面的内容,都是从实践中总结出来的。

AI公园 ·  2020-02-03 09:09:23
Copyright©2005-2020 51CTO.COM 版权所有 未经许可 请勿转载