如何让AI能力延伸至边缘:存储是基础

作者: 佚名 2019-07-18 09:36:39

如何让AI能力延伸至边缘:存储是基础

人工智能技术的复兴,主要归功于过去几年以来以IT为代表的计算能力的显著提升。在与图形处理单元(GPU)以及云计算资源的弹性特征配合使用的情况下,在机器学习与自然语言处理实例当中,AI提出的计算资源需求对于企业而言终于不再是可望而不可及的奢求。

尽管如此,还有另一种不那么广受关注但又同样重要的AI复兴趋势,即AI技术被应用于物联网与边缘计算场景当中。根据StorCentric公司CEO Mihir Shah所言,这样的趋势代表着大数据的工作“对速度有着严格的要求,同时又必须配合良好的稳定性。”

而所有这一切,都必须通过存储底层来支撑——换言之,除了计算能力之外,存储已经成为AI在数据生态系统当中发挥重要作用的另一支柱。存储对于AI技术之所以不可或缺,是因为AI巨大的计算量需要对数据进行大规模快速访问,而这方面要求在边缘计算与备份等实际场景中又显得更加现实且突出。

当配合理想的存储容量时,AI的计算速度才能够为诸多有利于智能物联网(IIoT)的前沿边缘计算用例提供助力。

>>> 人脸识别

智能物联网的存储要求主要体现在边缘计算应用当中。比如,美国国防部目前正在利用人脸识别等AI技术对偏远地区进行管理,用以验证进出设施的具体人员。很明显,涉及高级机器学习、卷积神经网络以及统计认知计算等因素的人脸识别技术对存储设备提出了特殊的要求,而这,也是确保其正常运作的基础所在。Shah在提到国防部部署人脸识别方案时表示:“他们更倾向于使用直接附加存储方案,旨在提升数据流通速度。这类方案具有便携性、速度性以及易于使用等优势。”

在这个特定用例当中,人脸识别的实现在很大程度上依赖于存储对边缘计算的支持。Shah提到,“边缘位置的这些人脸识别系统就位于服务器旁边。该服务器直接连接至设备。当有人走进来时,设备会扫描他们的面部并整理出他们的生物识别指标。而服务器则会即刻进行处理,并与存储设备中的信息进行比对。”

>>> AI在边缘

在之前提到的示例与其它边缘AI部署方案当中,存储单元往往面临着一系列特定要求。一般来讲,缩小设备尺寸对于实现物联网而言至关重要。因此,尺寸成为了边缘位置下,附加存储设备的核心设计因素,而在这样的设计下,同时还要保证其在“瘦身”之后仍然有能力处理AI所需要的数据规模。StorCentric公司CTO Rod Harrison观察到,用于支持边缘计算用例的某些尺寸较小的存储单元能够容纳大约70 TB数据。另外,这种存储设备必须具备用户友好特性,从而满足远程环境当中非技术用户的操作需要。Shah指出,“在这样的环境中,因为没有太多IT专业人员,所以对设备的易用性及速度都提出了要求,为此,我们在设备上配备了Thunderbolt连接端口。”

>>> 移动边缘计算

此外,便携性的重要性同样在不断攀升,除了边缘存储之外,包括边缘计算本身也在强调便携性。目前最典型的案例,就是大量智能手机正在持续生成传感器数据。尽管与智能物联网中的IT资产相比,智能手机可能并没有那么大的存储需求,但它也从另一个方面强调了便携性的优势。另一个典型例子是部署在偏远地区的军用战斗车辆上的存储单元。“这是一种本地存储,操作人员可以将设备带回基地,并下载至中央服务器。”此外,在发生故障的情况下,操作者也能够轻松更换这种存储单元以实现业务连续性。Shah强调,“因为整套系统非常易于使用,所以即使没有IT工作小组,一旦某块驱动器发生故障或者出现了其它意外状况,身在现场的任何士兵都可以弹出这块损坏的驱动器并立刻插入新的驱动器。”

>>> 智能边缘

存储对于智能物联网的提升至关重要,它使得相关设备能够根据需要卸下数据、按需访问数据,并支持由部署在云端的AI提出的计算要求。如此一来,AI技术的可行性将不仅延伸至认知计算,现时也将延伸至物联网领域。此外,便捷而可靠的存储对于集中部署的AI方案同样必不可少,并直接为我们带来了当前各类常见的AI实现成果。“在我看来,AI与物联网技术的融合首先将在一系列大型企业当中实现;但随着时间的推移,这方面成果最终将渗透到更多中小型企业之内。”Shah表示。

AI 边缘计算 存储
上一篇:人类看见形状,AI看见纹理:从计算机视觉分类失败谈起 下一篇:EasyDL轻松搞定对抗学习 多算法比对临床试验数据
评论
取消
暂无评论,快去成为第一个评论的人吧

更多资讯推荐

AI如何改善采矿行业现状? 精选

人工智能的引入,有望将采矿业转化成一个更安全、利润空间更大且更为环保的行业。

佚名 ·  3天前
大小仅1MB!超轻量级的人脸识别模型火爆Github

近日,用户Linzaer在Github上开源了一款适用于边缘计算设备、移动端设备以及 PC 的超轻量级通用人脸检测模型,该模型文件大小仅1MB,一经开源就霸榜Github Trending榜单。

佚名 ·  3天前
AI艺术日渐繁荣,未来何去何从? 精选

利用人工智能创作而成的画作近年来越来越受瞩目,有的作品甚至能在知名拍卖行拍得高价。但这类作品仍有不少问题需要解答,比如它的作者是开发出算法的程序员还是计算机呢?AI艺术的市场未来将走向何方呢?

网易智能 ·  2019-10-17 08:50:25
人工智能进入大学校园带来了哪些变化

在一个人的教育生涯中,大学如何成为最好的学习体验?高等教育的目的就是发展技能,探索新理论,并将其应用于现实生活中。在整个学习期间,鼓励学生完成学习任务,熟练掌握技能,同时培养一个健康的、积极的、和谐的生活态度。

风车云马 ·  2019-10-16 09:00:00
图灵奖得主Yoshua Bengio:深度学习当务之急,是理解因果关系

深度学习擅长在大量数据中发现模式,但无法解释它们之间的联系,而图灵奖获得者Yoshua Bengio想要改变这一点。

佚名 ·  2019-10-15 05:15:00
人工智能遇冷,自动驾驶受阻?

2016到2019,人工智能经历了梦幻般的三年,但人工智能的历史规律告诉我们:高潮过后可能会引来新的一波沉寂,人工智能助推下的自动驾驶也会受到波及。

佚名 ·  2019-10-14 11:00:27
AI核心难点之一:情感分析的常见类型与挑战

情感分析或情感人工智能,在商业应用中通常被称为意见挖掘,是自然语言处理(NLP)的一个非常流行的应用。文本处理是该技术最大的分支,但并不是唯一的分支。情绪AI有三种类型及其组合。

Veronika Vartanova ·  2019-10-12 10:14:41
机器学习帮你预测电池寿命:精确了解电池还能充几次 精选

电池寿命的确定,是移动硬件发展的重要一环,但是由于电池电化学反应的不确定性以及不同的使用环境和习惯,电池寿命变成了一门玄学。不过柏林的三位小伙伴,利用Tensorflow,在原有的预测体系基础上。更近一步,完成了电池的全寿命预测。

靓科技解读 ·  2019-10-11 13:00:40
Copyright©2005-2019 51CTO.COM 版权所有 未经许可 请勿转载