打击换脸技术滥用,谷歌发布大型数据集对抗deepfake

作者: 机器之心 2019-10-08 15:00:45

 deepfake 出现以来引发了大量争议,也带来了诸多伦理和社会问题。最近,Facebook、微软等巨头已开始着手打击 deepfake 滥用,斥资 1000 多万美元举办 deepfake 检测挑战赛。谷歌也不甘落后,近日,这家科技巨头宣布开源大型 deepfake 视频数据集,以支持社区对 deepfake 检测的研究。

深度学习催生出许多几年前难以想象的技术。现代生成模型(modern generative model)就是其中一例,它能够合成超逼真的图像、语音、音乐甚至视频。这些模型已被广泛应用于大量用途,包括直接基于文本生成类人语音、为医疗影像研究生成训练数据等。

和其他革新性技术一样,生成模型也带来了新的挑战,如「deepfake」。2017 年底,deepfake 首次亮相,之后出现了很多开源 deepfake 生成方法,导致合成视频片段大量涌现。尽管很多此类视频的制作初衷是搞笑,但还是有一些 deepfake 视频对个人和社会造成了恶劣影响。

谷歌严肃地考虑了这些问题。去年,谷歌发布了「AI 准则」,承诺探索 AI 优秀实践,以减轻 AI 滥用和 AI 危害。去年 1 月,谷歌发布了一个合成语音数据集,用于支持 ASVspoof 2019 挑战赛,帮助开发高性能的假音频检测器。作为赛事的数据库,该数据集已被 150 多个研究机构和工业界组织下载,目前该数据集已向公众免费开放。

近日,谷歌 AI 与 Jigsaw(原 Google Ideas)合作发布了大型视觉 deepfake 数据集,该数据集已被纳入慕尼黑工业大学和那不勒斯腓特烈二世大学创建的 FaceForensics 基准(由谷歌联合赞助)。

FaceForensics 基准数据集地址:https://github.com/ondyari/FaceForensics/

谷歌此次发布的 deepfake 数据集中的视频示例。在其生成过程中,随机选择一对演员,深度神经网络对其执行换脸操作。

为了制作该数据集,谷歌在过去一年中与多名有偿和无偿演员合作拍摄了数百个视频。然后,谷歌使用公开可用的 deepfake 生成方法,基于这些视频创建出数千个 deepfake 视频。这些真假视频共同构成了该数据集,谷歌创建此数据集的目的是支持 deepfake 检测方面的研究。作为 FaceForensics 基准的一部分,该数据集目前已开源,研究社区可免费获取并用于开发合成视频检测方法。

在多种场景中对演员进行拍摄。上图为真实演员,下图是对应的 deepfake 示例,二者的差异程度取决于创建 deepfake 所用的另一位演员。

deepfake 技术发展迅速,谷歌表示将继续增加该数据集中的数据,并在该领域中持续开展合作。谷歌坚定地支持研究社区减轻合成媒介滥用所带来的潜在危害,而该数据集的发布就是其中的重要一步。

人工智能 机器学习 技术
上一篇:AI用于疾病诊断和新药品设计的前景可观 下一篇:你的人脸数据都去了哪儿?
评论1
取消
2019-10-09 16:34:13

更多资讯推荐

面部识别的利与弊:是福还是祸?

虽然现代技术使面部识别更加精确和安全,但与面部识别隐私问题和监控有关的担忧也在增加。因此,让我们在这篇文章中探讨一下这该技术的利与弊。

Naveen Joshi ·  2021-06-01 16:36:22
人工智能和5G如何结合以实现物联网收入最大化

网络系统通过信令和使用软件以及分析来检测和分类设备非常棘手,并且对有限且日益紧张的网络资源提出了巨大的需求。然而,解决这些问题有一个主要解决方案:采用人工智能、自动化和5G技术。

Jordi Castellvi ·  2021-06-01 13:49:15
MIT团队最新研究,仅靠LiDAR和2D地图实现端到端自动驾驶

最近, MIT 计算机科学与人工智能实验室(CSAIL)团队成功展示了一种基于机器学习的自动驾驶系统,该端到端框架仅使用 LiDAR获取的原始 3D 点云数据和类似于手机上的低分辨率 GPS 地图就能进行自主导航,并且大大提升了鲁棒性。

文龙 ·  2021-06-01 12:47:51
自然语言处理(NLP)的历史及其发展方向

自然语言处理的历史是一个充满曲折的故事。它从徒劳的研究开始,经过多年卓有成效的工作,最后结束于一个我们仍在试图找出该领域极限的时代。今天,让我们来一起探索这一AI科学分支的发展。

佚名 ·  2021-06-01 12:46:26
是福还是祸?人脸识别技术的利与弊

面部识别并不是一项全新的技术,但人工智能和机器学习不断使面部识别变得更好。苹果通过引入具有 3D 扫描功能的面部生物识别系统和 iPhone 的 Face ID,提高了面部识别的标准。

Naveen Joshi ·  2021-06-01 11:11:01
人工智能能否使机器具有流体智力?

麻省理工学院和奥地利研究人员为灵活的人工智能创造了“液体”机器学习。

千家网 ·  2021-06-01 10:38:55
高真实感、全局一致、外观精细,面向模糊目标的NeRF方案出炉

自 NeRF 被提出后,有多项研究对其加以改进。在本篇论文中,上海科技大学的研究者提出了首个将显式不透明监督和卷积机制结合到神经辐射场框架中以实现高质量外观的方案。

Haimin Luo等 ·  2021-06-01 09:57:39
大脑模拟NLP,高德纳奖得主:神经元集合演算用于句子解析

一个简单的大脑模型为人工智能研究提供了新的方向。世界顶尖计算机科学理论学家、哥德尔奖和高德纳奖获得者、哥伦比亚大学计算机科学教授 Christos Papadimitriou 关于「大脑中单词表征」的演讲。

Ben Dickson ·  2021-06-01 09:39:24
Copyright©2005-2021 51CTO.COM 版权所有 未经许可 请勿转载