打击换脸技术滥用,谷歌发布大型数据集对抗deepfake

作者: 机器之心 2019-10-08 15:00:45

 deepfake 出现以来引发了大量争议,也带来了诸多伦理和社会问题。最近,Facebook、微软等巨头已开始着手打击 deepfake 滥用,斥资 1000 多万美元举办 deepfake 检测挑战赛。谷歌也不甘落后,近日,这家科技巨头宣布开源大型 deepfake 视频数据集,以支持社区对 deepfake 检测的研究。

深度学习催生出许多几年前难以想象的技术。现代生成模型(modern generative model)就是其中一例,它能够合成超逼真的图像、语音、音乐甚至视频。这些模型已被广泛应用于大量用途,包括直接基于文本生成类人语音、为医疗影像研究生成训练数据等。

和其他革新性技术一样,生成模型也带来了新的挑战,如「deepfake」。2017 年底,deepfake 首次亮相,之后出现了很多开源 deepfake 生成方法,导致合成视频片段大量涌现。尽管很多此类视频的制作初衷是搞笑,但还是有一些 deepfake 视频对个人和社会造成了恶劣影响。

谷歌严肃地考虑了这些问题。去年,谷歌发布了「AI 准则」,承诺探索 AI 优秀实践,以减轻 AI 滥用和 AI 危害。去年 1 月,谷歌发布了一个合成语音数据集,用于支持 ASVspoof 2019 挑战赛,帮助开发高性能的假音频检测器。作为赛事的数据库,该数据集已被 150 多个研究机构和工业界组织下载,目前该数据集已向公众免费开放。

近日,谷歌 AI 与 Jigsaw(原 Google Ideas)合作发布了大型视觉 deepfake 数据集,该数据集已被纳入慕尼黑工业大学和那不勒斯腓特烈二世大学创建的 FaceForensics 基准(由谷歌联合赞助)。

FaceForensics 基准数据集地址:https://github.com/ondyari/FaceForensics/

谷歌此次发布的 deepfake 数据集中的视频示例。在其生成过程中,随机选择一对演员,深度神经网络对其执行换脸操作。

为了制作该数据集,谷歌在过去一年中与多名有偿和无偿演员合作拍摄了数百个视频。然后,谷歌使用公开可用的 deepfake 生成方法,基于这些视频创建出数千个 deepfake 视频。这些真假视频共同构成了该数据集,谷歌创建此数据集的目的是支持 deepfake 检测方面的研究。作为 FaceForensics 基准的一部分,该数据集目前已开源,研究社区可免费获取并用于开发合成视频检测方法。

在多种场景中对演员进行拍摄。上图为真实演员,下图是对应的 deepfake 示例,二者的差异程度取决于创建 deepfake 所用的另一位演员。

deepfake 技术发展迅速,谷歌表示将继续增加该数据集中的数据,并在该领域中持续开展合作。谷歌坚定地支持研究社区减轻合成媒介滥用所带来的潜在危害,而该数据集的发布就是其中的重要一步。

人工智能 机器学习 技术
上一篇:AI用于疾病诊断和新药品设计的前景可观 下一篇:你的人脸数据都去了哪儿?
评论1
取消
2019-10-09 16:34:13

更多资讯推荐

人工智能项目:需要注意的七件事

维度R的一份报告显示,十分之八的AI失败了,而96%的AI则在标注,标明和建立模型置信度方面遇到了问题。以下是人工智能项目失败的7个常见原因。

闻数起舞 ·  12h前
2020年第一季度人工智能的最新进展

人工智能曾经只是科幻小说,是计算世界的遥不可及的梦想,如今已成为现实。 人工智能,简称AI,是用来描述机器模拟人类智能的能力。

闻数起舞 ·  17h前
2020年优秀AI软件开发工具

人工智能对软件工程和科技公司的影响不可否认,而且还在不断增加。 有许多组织正在利用这项革命性的技术来创建开箱即用的功能强大的Web和移动应用程序。 无论大小,企业都可以利用AI来提高投资回报率,提高效率并很大程度地降低运营风险。

闻数起舞 ·  17h前
机器学习变革物流运输和交通出行

云和机器学习的融合催生了自动驾驶技术尤其是人们出行方式的广泛创新,正在改变整个行业的游戏规则。根据普华永道(PWC)的数据,68%的物流运输企业负责人认为,未来5年,提供物流运输服务的核心技术的改变将颠覆整个行业。

AWS大中华区云服务产品管理总经理顾凡 ·  2天前
人工智能可以塑造活动产业的未来吗?

活动组织者可以为活动管理引入AI,以使他们的活动更加成功。现场活动是很好的营销方式,也是增强业务与客户关系的优秀方式。根据一项调查,84%的领导者认为活动是其业务成功的关键因素。技术的使用正在改变活动的计划和组织方式。

佚名 ·  2天前
提升城市气质守护宜居环境 AI打通治理闭环

人工智能被一些研究人员称为“21世纪的电力”,认为其几乎可以为万事万物提供动力。而在城市加速发展的当下,人工智能也渐渐成为了新型智慧城市建设的“推动者”和“守望者”。

今夕何夕 ·  2天前
12个场景应用,百余种算法,AI是如何攻占经济学的?

在虚拟世界中模拟现实经济状况,想法设计更好的制度只是AI和经济学结合方式之一。其实深度强化学习在面临风险参数和不确定性不断增加的现实经济问题时,也可以提供更好的性能和更高的精度。

蒋宝尚 ·  3天前
你在打王者农药,有人却用iPhone来训练神经网络

在 iOS 设备上也可以直接训练 LeNet 卷积神经网络,而且性能一点也不差,iPhone 和 iPad 也能化为实实在在的生产力。

佚名 ·  3天前
Copyright©2005-2020 51CTO.COM 版权所有 未经许可 请勿转载