人工智能改善教育的32种方式

作者: 就要买买买 2019-10-10 10:10:29

在过去的几年里,从社交媒体到语音识别,从物联网到新零售,从机器人到自动驾驶……人工智能在各个行业掀起热潮,进入社会生活的方方面面。过去40年的信息时代中,我们总是需要首先对机器发出指令,而如今随着机器学习算法的进步,以及与之紧密相关的大数据和强算力的发展,人工智能已经可以在某种程度上自主进行推论了,并且基于在线数据和算法的应用模型是可以实时迭代的,这与传统的数据分析有着本质区别。

在人工智能赋能教育的实践探索上,国外已经有了许多工具和应用,总结起来,可以分为改进教学和改进管理两个大的方面,共32个细分领域。改进教学是人工智能对教与学实践的促进,改进管理则是对校园管理等后勤行政方面的效用提升。

一、改进教学

二、改进管理

从现状和发展动态来看,人工智能几乎是学校教学与管理各个方面的加速器,人工智能在教育领域的应用前景和潜力是无穷的。

人工智能 AI 教育
上一篇:微软 AI 新技术:让你的头像照片动起来,并有感情地“讲话” 下一篇:网络安全中的AI,炒作与真实并存
评论
取消
暂无评论,快去成为第一个评论的人吧

更多资讯推荐

面部识别的利与弊:是福还是祸?

虽然现代技术使面部识别更加精确和安全,但与面部识别隐私问题和监控有关的担忧也在增加。因此,让我们在这篇文章中探讨一下这该技术的利与弊。

Naveen Joshi ·  2021-06-01 16:36:22
人工智能和5G如何结合以实现物联网收入最大化

网络系统通过信令和使用软件以及分析来检测和分类设备非常棘手,并且对有限且日益紧张的网络资源提出了巨大的需求。然而,解决这些问题有一个主要解决方案:采用人工智能、自动化和5G技术。

Jordi Castellvi ·  2021-06-01 13:49:15
MIT团队最新研究,仅靠LiDAR和2D地图实现端到端自动驾驶

最近, MIT 计算机科学与人工智能实验室(CSAIL)团队成功展示了一种基于机器学习的自动驾驶系统,该端到端框架仅使用 LiDAR获取的原始 3D 点云数据和类似于手机上的低分辨率 GPS 地图就能进行自主导航,并且大大提升了鲁棒性。

文龙 ·  2021-06-01 12:47:51
自然语言处理(NLP)的历史及其发展方向

自然语言处理的历史是一个充满曲折的故事。它从徒劳的研究开始,经过多年卓有成效的工作,最后结束于一个我们仍在试图找出该领域极限的时代。今天,让我们来一起探索这一AI科学分支的发展。

佚名 ·  2021-06-01 12:46:26
是福还是祸?人脸识别技术的利与弊

面部识别并不是一项全新的技术,但人工智能和机器学习不断使面部识别变得更好。苹果通过引入具有 3D 扫描功能的面部生物识别系统和 iPhone 的 Face ID,提高了面部识别的标准。

Naveen Joshi ·  2021-06-01 11:11:01
人工智能能否使机器具有流体智力?

麻省理工学院和奥地利研究人员为灵活的人工智能创造了“液体”机器学习。

千家网 ·  2021-06-01 10:38:55
大脑模拟NLP,高德纳奖得主:神经元集合演算用于句子解析

一个简单的大脑模型为人工智能研究提供了新的方向。世界顶尖计算机科学理论学家、哥德尔奖和高德纳奖获得者、哥伦比亚大学计算机科学教授 Christos Papadimitriou 关于「大脑中单词表征」的演讲。

Ben Dickson ·  2021-06-01 09:39:24
美城市Baltimore可能颁布最严格的面部识别禁令

据介绍,拟议的法令将禁止私人或商业组织,甚至执法机构在城市使用面部识别技术。

千家网 ·  2021-06-01 09:34:07
Copyright©2005-2021 51CTO.COM 版权所有 未经许可 请勿转载