机器学习免费跑分神器:集成各大数据集,连接GitHub就能用

作者: 栗子 鱼羊 2019-10-12 11:20:42

本文经AI新媒体量子位(公众号ID:QbitAI)授权转载,转载请联系出处。

搞机器学习的小伙伴们,免不了要在各种数据集上,给AI模型跑分。

现在,Papers with Code (那个以论文搜代码的神器) 团队,推出了自动跑分服务,名叫sotabench,以跑遍所有开源模型为己任。

有了它,不用上传代码,只要连接GitHub项目,就有云端GPU帮你跑分;每次提交了新的commit,系统又会自动更新跑分。还有世界排行榜,可以观察各路强手的成绩。

机器学习免费跑分神器:集成各大数据集,连接GitHub就能用

除了支持各大主流数据集,还支持用户上传自己的数据集。

也可以看看,别人的论文结果,到底靠谱不靠谱。

比如说,fork一下Facebook的FixRes这个项目,配置一下评估文件:

机器学习免费跑分神器:集成各大数据集,连接GitHub就能用

然后一键关联,让Sotabench的GPU跑一下ImageNet的图像分类测试。

就能得到这样的结果:

机器学习免费跑分神器:集成各大数据集,连接GitHub就能用

Top-1准确率,Top-5准确率,跟论文的结果有何差距(见注),运行速度,全球排名,全部一目了然。

注:ε-REPR,结果与论文结果差距在0.3%以内时打勾,差距≥0.3%且比论文结果差显示为红叉,比论文结果好显示为勾+

这个免费的跑分神器,发布一天,便受到热烈欢迎:推特点赞600+,Reddit热度270+。

机器学习免费跑分神器:集成各大数据集,连接GitHub就能用

网友纷纷表示:这对开发者社区来说太有用了!

那么,先来看一下sotabench的功能和用法吧。

用法简单,海纳百川

团队说,sotabench就是Papers with Code的双胞胎姐妹:

Papers with Code大家很熟悉了,它观察的是论文报告的跑分。可以用来寻找高分模型对应的代码,是个造福人类的工具。

机器学习免费跑分神器:集成各大数据集,连接GitHub就能用

与之互补,sotabench观察的是开源项目,代码实际运行的结果。可以测试自己的模型,也能验证别家的模型,是不是真有论文说的那么强。

它支持跟其他模型的对比,支持查看速度和准确率的取舍情况。

那么,sotabench怎么用?简单,只要两步。

第一步,先在本地评估一下模型:

在GitHub项目的根目录里,创建一个sotabench.py文件。里面可以包含:加载、处理数据集和从中得出预测所需的逻辑。每提交一个commit,这个文件都会运行。然后,用个开源的基准测试库来跑你的模型。这个库可以是sotabench-eval,这个库不问框架,里面有ImageNet等等数据集;也可以是torchbench,这是个PyTorch库,和PyTorch数据集加载器搭配食用更简单。

机器学习免费跑分神器:集成各大数据集,连接GitHub就能用

一旦成功跑起来,就可以进入下一步。

第二步,连接GitHub项目,sotabench会帮你跑:

机器学习免费跑分神器:集成各大数据集,连接GitHub就能用

点击这个按钮,连到你的GitHub账号,各种项目就显现了。选择你要测试的那个项目来连接。连好之后,系统会自动测试你的master,然后记录官方结果,一切都是跑在云端GPU上。测试环境是根据requirement.txt文件设置的,所以要把这个文件加进repo,让系统捕捉到你用的依赖项。

从此,每当你提交一次commit,系统都会帮你重新跑分,来确保分数是最新的,也确保更新的模型依然在工作。

这样一来,模型出了bug,也能及时知晓。

机器学习免费跑分神器:集成各大数据集,连接GitHub就能用

如果要跑别人家的模型,fork到自己那里就好啦。

目前,sotabench已经支持了一些主流数据集:

机器学习免费跑分神器:集成各大数据集,连接GitHub就能用
机器学习免费跑分神器:集成各大数据集,连接GitHub就能用

列表还在持续更新中,团队也在盛情邀请各路豪杰,一同充实benchmark大家庭。

既支持创建一个新的benchmark,也支持为现有benchmark添加新的实现。

你可以给sotabench-eval或torchbench项目提交PR,也可以直接创建新的Python包。

一旦准备就绪,就在sotabench官网的论坛上,发布新话题,团队会把你的benchmark加进去的:

机器学习免费跑分神器:集成各大数据集,连接GitHub就能用

好评如潮

这样的一项服务推出,网友们纷纷点赞,好评如潮,推特点赞600+。

机器学习免费跑分神器:集成各大数据集,连接GitHub就能用
机器学习免费跑分神器:集成各大数据集,连接GitHub就能用

有网友表示:

太棒了!对刚入门的新手来说,数据集获取、预处理和评估的自动化和标准化很有用。通过分析不同模型及其超参数结果,来评估这些模型,本身是挺困难的一件事,你得在各种论文中查阅大量的非结构化数据。有了这个,这件事就轻松多了。(部分意译)

机器学习免费跑分神器:集成各大数据集,连接GitHub就能用

许多网友对这个项目进行了友好的探讨及建议,而开发人员也在线积极回应。

比如这位网友建议:能在每次提交的时候报告模型的超参数吗?

机器学习免费跑分神器:集成各大数据集,连接GitHub就能用

作者很快回复说:英雄所见略同。下次更新就加上!

并且,他们还考虑在将来的更新中,让使用者把链接添加到生成模型的训练参数中。

机器学习免费跑分神器:集成各大数据集,连接GitHub就能用

传送门

sotabench官网:

https://sotabench.com/

基准测试库通用版:

https://github.com/paperswithcode/sotabench-eval

基准测试库PyTorch版:

https://github.com/paperswithcode/torchbench

机器学习 人工智能 计算机
上一篇:对于人工智能的恐惧及其5个解决方法 下一篇:用AI实现动画角色的姿势迁移,Adobe等提出新型「木偶动画」
评论
取消
暂无评论,快去成为第一个评论的人吧

更多资讯推荐

关于AI在游戏领域的5个预测,你不一定都知道

未来,人工智能的发展将如何帮助开发者创造更好的游戏呢?以下是对人工智能在游戏产业中的5个预测。

Yu ·  15h前
人工智能如何改变医疗保健行业

当今世界最具前瞻性的两项技术是人工智能(AI)和机器人技术。实现这两种技术可以导致多个行业垂直领域的创新,包括医疗保健行业。

科幻网 ·  18h前
Epoch不仅过时,而且有害?Reddit机器学习板块展开讨论

Epoch最大的好处是确保每个样本被定期使用。当使用IID抽样时,你只要能想办法确保所有样本被同样频繁地使用就好了。

梦晨 ·  20h前
人工智能寒冬又到?美国教授arxiv发文批判AI,遭reddit网友狂喷

人工智能又被批评了?美国教授arxiv发文批评AI有四个误区,却不料遭reddit网友炮轰炒冷饭。

佚名 ·  20h前
企业的人工智能计划获得成功需要做的10件事

在实施人工智能的计划中,一些企业可能会忽略一些重要的细节,这些细节可能意味着人工智能计划成败之间的差异。

HERO ·  1天前
人工干预如何提高模型性能?看这文就够了

下面我先从使用机器学习模型来推理系统入手,再展开人工干预的推理循环的技术介绍。

AI科技大本营 ·  1天前
人工智能在国防领域将发挥什么作用?

2021年4月26日,根据数据与分析公司GlobalData新发布的一项名为《关于航空航天与防务领域中的人工智能技术专题研究》的研究报告,在未来战场中,人工智能技术或将充当辅助力量——人与机器协同工作,相较于人类,人工智能可以更有效地执行一些特定任务。

安防展览网 ·  1天前
做出电影级的 CG 渲染!斯坦福大学研究人员提出神经光图渲染

近日,一篇题为Neural Lumigraph Rendering的研究论文声称,它对现有的2个数量级图像进行了改进,展示了通过机器学习管道实现实时 CG 渲染的几个步骤。

佚名 ·  1天前
Copyright©2005-2021 51CTO.COM 版权所有 未经许可 请勿转载