PyTorch终于能用上谷歌云TPU,推理性能提升4倍,该如何薅羊毛?

作者: 晓查 2019-10-14 09:58:00

本文经AI新媒体量子位(公众号ID:QbitAI)授权转载,转载请联系出处。

 Facebook在PyTorch开发者大会上正式推出了PyTorch 1.3,并宣布了对谷歌云TPU的全面支持,而且还可以在Colab中调用云TPU。

之前机器学习开发者虽然也能在Colab中使用PyTorch,但是支持云TPU还是第一次,这也意味着你不需要购买昂贵的GPU,可以在云端训练自己的模型。

而且如果你是谷歌云平台(Google Cloud Platform)的新注册用户,还能获得300美元的免费额度。

PyTorch终于能用上谷歌云TPU,推理性能提升4倍,该如何薅羊毛?

现在PyTorch官方已经在Github上给出示例代码,教你如何免费使用谷歌云TPU训练模型,然后在Colab中进行推理。

训练ResNet-50

PyTorch先介绍了在云TPU设备上训练ResNet-50模型的案例。如果你要用云TPU训练其他的图像分类模型,操作方式也是类似的。

在训练之前,我们先要转到控制台创建一个新的虚拟机实例,指定虚拟机的名称和区域。

PyTorch终于能用上谷歌云TPU,推理性能提升4倍,该如何薅羊毛?

如果要对Resnet50在真实数据上进行训练,需要选择具有最多CPU数量的机器类型。为了获得最佳效果,请选择n1-highmem-96机器类型。

然后选择Debian GNU/Linux 9 Stretch + PyTorch/XLA启动盘。如果打算用ImageNet真实数据训练,需要至少300GB的磁盘大小。如果使用假数据训练,默认磁盘大小只要20GB。

创建TPU

  1. 转到控制台中创建TPU。
  2. 在“Name”中指定TPU Pod的名称。
  3. 在“Zone”中指定云TPU的区域,确保它与之前创建的虚拟机在同一区域中。
  4. 在“ TPU Type”下,选择TPU类型,为了获得最佳效果,请选择v3-8TPU(8个v3)。
  5. 在“ TPU software version”下,选择最新的稳定版本。
  6. 使用默认网络。
  7. 设置IP地址范围,例如10.240.0.0。

官方建议初次运行时使用假数据进行训练,因为fake_data会自动安装在虚拟机中,并且只需更少的时间和资源。你可以使用conda或Docker进行训练。

在fake_data上测试成功后,可以开始尝试用在ImageNet的这样实际数据上进行训练。

用conda训练:

  1. # Fill in your the name of your VM and the zone. 
  2. $ gcloud beta compute ssh "your-VM-name" --zone "your-zone"
  3. (vm)$ export TPU_IP_ADDRESS=your-ip-address 
  4. (vm)$ export XRT_TPU_CONFIG="tpu_worker;0;$TPU_IP_ADDRESS:8470" 
  5. (vm)$ ulimit -n 10240 
  6. (vm)$ conda activate torch-xla-0.5 
  7. (torch-xla-0.5)$ python /usr/share/torch-xla-0.5/pytorch/xla/test/test_train_imagenet.py --datadir=~/imagenet --model=resnet50 --num_epochs=90 --num_workers=64 --batch_size=128 --log_steps=200 

用Docker训练:

  1. # Fill in your the name of your VM and the zone. 
  2. $ gcloud beta compute ssh "your-VM-name" --zone "your-zone"
  3. (vm)$ export TPU_IP_ADDRESS=your-ip-address 
  4. (vm)$ docker run --shm-size 128G -v ~/imagenet:/tmp/imagenet -e XRT_TPU_CONFIG="tpu_worker;0;$TPU_IP_ADDRESS:8470" gcr.io/tpu-pytorch/xla:r0.5 python3 pytorch/xla/test/test_train_imagenet.py --model=resnet50 --num_epochs=90 --num_workers=64 --log_steps=200 --datadir=/tmp/imagenet 

在n1-highmem-96的虚拟机上选用完整v3-8 TPU进行训练,第一个epoch通常需要约20分钟,而随后的epoch通常需要约11分钟。该模型在90个epoch后达到约76%的top-1准确率。

为了避免谷歌云后续进行计费,在训练完成后请记得删除虚拟机和TPU。

性能比GPU提升4倍

训练完成后,我们就可以在Colab中导入自己的模型了。

打开notebook文件,在菜单栏的Runtime中选择Change runtime type,将硬件加速器的类型改成TPU。

PyTorch终于能用上谷歌云TPU,推理性能提升4倍,该如何薅羊毛?

先运行下面的代码单元格,确保可以访问Colab上的TPU:

  1. import os 
  2. assert os.environ[‘COLAB_TPU_ADDR’], ‘Make sure to select TPU from Edit > Notebook settings > Hardware accelerator’ 

然后在Colab中安装兼容PyTorch/TPU组件:

  1. DIST_BUCKET="gs://tpu-pytorch/wheels" 
  2. TORCH_WHEEL="torch-1.15-cp36-cp36m-linux_x86_64.whl" 
  3. TORCH_XLA_WHEEL="torch_xla-1.15-cp36-cp36m-linux_x86_64.whl" 
  4. TORCHVISION_WHEEL="torchvision-0.3.0-cp36-cp36m-linux_x86_64.whl" 
  5. # Install Colab TPU compat PyTorch/TPU wheels and dependencies 
  6. !pip uninstall -y torch torchvision 
  7. !gsutil cp "$DIST_BUCKET/$TORCH_WHEEL" . 
  8. !gsutil cp "$DIST_BUCKET/$TORCH_XLA_WHEEL" . 
  9. !gsutil cp "$DIST_BUCKET/$TORCHVISION_WHEEL" . 
  10. !pip install "$TORCH_WHEEL" 
  11. !pip install "$TORCH_XLA_WHEEL" 
  12. !pip install "$TORCHVISION_WHEEL" 
  13. !sudo apt-get install libomp5 

接下来就可以导入你要训练好的模型和需要进行推理的图片了。

在PyTorch上使用TPU对性能的提升到底有多明显呢?官方选用了v2-8的一个核心,即1/8 TPU的情形,与使用英伟达Tesla K80 GPU进行对比,实测显示推理时间大大缩短,性能约有4倍左右的提升。

PyTorch终于能用上谷歌云TPU,推理性能提升4倍,该如何薅羊毛?

GitHub地址:

https://github.com/pytorch/xla/tree/master/contrib/colab

机器学习 人工智能 计算机
上一篇:2019年度十大Web开发趋势 下一篇:非监督学习最强攻略
评论
取消
暂无评论,快去成为第一个评论的人吧

更多资讯推荐

人工智能项目:需要注意的七件事

维度R的一份报告显示,十分之八的AI失败了,而96%的AI则在标注,标明和建立模型置信度方面遇到了问题。以下是人工智能项目失败的7个常见原因。

闻数起舞 ·  15h前
2020年第一季度人工智能的最新进展

人工智能曾经只是科幻小说,是计算世界的遥不可及的梦想,如今已成为现实。 人工智能,简称AI,是用来描述机器模拟人类智能的能力。

闻数起舞 ·  20h前
2020年优秀AI软件开发工具

人工智能对软件工程和科技公司的影响不可否认,而且还在不断增加。 有许多组织正在利用这项革命性的技术来创建开箱即用的功能强大的Web和移动应用程序。 无论大小,企业都可以利用AI来提高投资回报率,提高效率并很大程度地降低运营风险。

闻数起舞 ·  20h前
机器学习变革物流运输和交通出行

云和机器学习的融合催生了自动驾驶技术尤其是人们出行方式的广泛创新,正在改变整个行业的游戏规则。根据普华永道(PWC)的数据,68%的物流运输企业负责人认为,未来5年,提供物流运输服务的核心技术的改变将颠覆整个行业。

AWS大中华区云服务产品管理总经理顾凡 ·  2天前
人工智能可以塑造活动产业的未来吗?

活动组织者可以为活动管理引入AI,以使他们的活动更加成功。现场活动是很好的营销方式,也是增强业务与客户关系的优秀方式。根据一项调查,84%的领导者认为活动是其业务成功的关键因素。技术的使用正在改变活动的计划和组织方式。

佚名 ·  2天前
提升城市气质守护宜居环境 AI打通治理闭环

人工智能被一些研究人员称为“21世纪的电力”,认为其几乎可以为万事万物提供动力。而在城市加速发展的当下,人工智能也渐渐成为了新型智慧城市建设的“推动者”和“守望者”。

今夕何夕 ·  2天前
12个场景应用,百余种算法,AI是如何攻占经济学的?

在虚拟世界中模拟现实经济状况,想法设计更好的制度只是AI和经济学结合方式之一。其实深度强化学习在面临风险参数和不确定性不断增加的现实经济问题时,也可以提供更好的性能和更高的精度。

蒋宝尚 ·  3天前
你在打王者农药,有人却用iPhone来训练神经网络

在 iOS 设备上也可以直接训练 LeNet 卷积神经网络,而且性能一点也不差,iPhone 和 iPad 也能化为实实在在的生产力。

佚名 ·  3天前
Copyright©2005-2020 51CTO.COM 版权所有 未经许可 请勿转载