MIT新研究表明机器学习不能标记假新闻

作者: 佚名 2019-10-16 11:52:15

麻省理工学院研究人员发表的两篇新论文显示,当前的机器学习模型还不能完成区分虚假新闻报道的任务。在不同的研究人员表明计算机可以令人信服地生成虚构新闻故事而无需太多人为监督之后,一些专家希望可以训练基于相同机器学习的系统来检测此类新闻。但是麻省理工学院的博士生Tal Schuster的研究表明,尽管机器学习模型擅长检测机器生成的文本,但它们无法识别故事是真实还是虚假的。

许多自动的事实检查系统都使用称为事实提取和验证(FEVER)的真实陈述数据库进行培训。

在一项研究中,Schuster和他的团队表明,即使他们知道肯定的陈述是正确的(“Greg说他的汽车是蓝色的”),机器学习事实检查系统也难以处理否定的陈述(“Greg从未说过他的车不是蓝色的”)

研究人员表示,问题在于数据库充满了人为的偏见。创建FEVER的人倾向于将其错误条目写为否定陈述,而将其真实陈述写为肯定陈述-因此计算机学会了将带有否定陈述的句子评为虚假。

这意味着系统正在解决一个比检测虚假新闻更容易的问题。麻省理工学院教授Regina Barzilay表示:“如果为自己创造一个简单的目标,就可以实现该目标。但是,它仍然无法使您将虚假新闻与真实新闻区分开。”

两项研究均由Schuster带领,并由MIT合作者团队完成。

最重要的是:第二项研究表明,机器学习系统可以很好地检测机器编写的故事,但不能将真实的故事与虚假的故事区分开。

MIT 机器学习
上一篇:人工智能进入大学校园带来了哪些变化 下一篇:4 分钟!OpenAI 的机器手学会单手解魔方了,完全自学无需编程
评论
取消
暂无评论,快去成为第一个评论的人吧

更多资讯推荐

基于机器学习的自动漏洞修复分析方法

。在本文中,我们提出了一个基于机器学习的自动化框架来自动化电力公司的修复决策分析。我们将其应用于一家电力公司,并对从该公司获得的两个真实运行数据集进行了大量实验。结果表明,该解决方案具有很高的有效性。

佚名 ·  21h前
解锁人工智能、机器学习和深度学习

深度学习是机器学习的子集,而机器学习又是人工智能的子集,但是这些名称的起源来自一个有趣的历史。此外,还有一些引人入胜的技术特征,可将深度学习与其他类型的机器学习区分开来……对于技能水平较高的ML、DL或AI的任何人来说,这都是必不可少的工作知识。

佚名 ·  22h前
你只需要这三个机器学习工具

在这件作品中,我们将讨论唯一需要的3个机器学习工具,使您的团队在产品中应用机器学习方面取得成功。

闻数起舞 ·  22h前
开发板能这么用?美国学者用Jetson Nano支持假肢,控制每一根手指

在一篇新论文中,来自明尼苏达大学等机构的研究者提出了一种基于嵌入式深度学习控制的神经假肢实现。

佚名 ·  3天前
机器学习如何影响系统设计:Learned Index Structures浅析

本文简要介绍了Learned Index Structures的实现和优缺点,希望可以给大家带来一些系统设计的启发和思路。

作者Victor ·  3天前
吴恩达的二八定律:80%的数据+20%的模型=更好的机器学习

一个机器学习团队80%的工作应该放在数据准备上,确保数据质量是最重要的工作,每个人都知道应该如此做,但没人在乎。

新智元 ·  3天前
机器学习在铁路缺陷检测中的实际应用

本文介绍了在铁轨的超声波检测过程中有效使用机器学习技术自动检测缺陷的经验,并提出了一种使用数学建模为神经网络创建训练数据集的有效方法,为实际缺陷图的识别提供了更高精度的指标。文中训练神经网络运算的原型实例,其实际缺陷图的预测精度高达92%。

李睿 ·  3天前
人工智能进军“古玩鉴定”,人类职业再遭冲击?

近两年,人工智能的风头虽然偶被5G、自动驾驶等所盖过,但其发展和热度并未因此受到影响。

林中易木 ·  4天前
Copyright©2005-2021 51CTO.COM 版权所有 未经许可 请勿转载