面部识别必看!5篇论文了解如何实现人脸反欺诈、跨姿势识别等(附链接)

作者: 佚名 2019-11-04 10:56:06

 

[ 导读 ]面部识别是计算机视觉中最大的研究领域之一。许多公司都投资于面部识别技术的研究和开发。

面部识别是计算机视觉中最大的研究领域之一。现在,我们可以使用面部识别来解锁手机,在安全门上验证身份,并在某些国家/地区进行刷脸支付。许多公司都投资于面部识别技术的研究和开发,本文将重点介绍其中的一些研究,并介绍五篇有关人脸识别的机器学习论文。

1. 大规模多模式人脸反欺诈的数据集和基准

随着大量实际应用,人脸识别技术变得越来越重要。从智能手机解锁到人脸验证付款方式,人脸识别可以在许多方面提高安全性和监视能力。

但是,该技术也带来一些风险。可以使用多种面部欺诈方法来欺诈这些系统。因此,面部防欺诈对于防止安全漏洞至关重要。

为了支持面部反欺诈研究,本文的作者介绍了一种名为CASIASURF的多模式面部反欺诈数据集。截止本文撰写之日,它是最大的面部反欺诈开放数据集。

具体来说,该数据集包括以RGB,深度和IR方式从1000个主题中拍摄的21000个视频。除了数据集外,作者还提出了一种新颖的多模式融合模型,作为面部反欺诈的基准。

发布/最近更新– 2019年4月1日

作者和投稿人–Shifeng Zhang (NLPR, CASIA, UCAS, China) , Xiaobo Wang (JD AI Research), Ajian Liu (MUST, Macau, China), Chenxu Zhao (JD AI Research), Jun Wan (NLPR, CASIA, UCAS, China), Sergio Escalera (University of Barcelona), Hailin Shi (JD AI Research), Zezheng Wang (JD Finance), Stan Z. Li (NLPR, CASIA, UCAS, China).。

https://arxiv.org/pdf/1812.00408v3.pdf

2. FaceNet:人脸识别和聚类的统一嵌入

在本文中,作者提出了一种称为FaceNet的面部识别系统。

该系统使用深度卷积神经网络优化嵌入,而不是使用中间瓶颈层。作者指出,该方法最重要的方面是系统的端到端学习。

该团队在CPU集群上训练了卷积神经网络1000到2000小时。然后,他们在四个数据集上评估了他们的方法。

值得注意的是,FaceNet在著名的野外标记人脸(LFW)数据集上的准确性达到99.63%,在Youtube Faces数据库上达到95.12%。

发布/最近更新– 2015年6月17日

作者和撰稿人– Florian Schroff, Dmitry Kalenichenko, and James Philbin, from Google Inc.

https://arxiv.org/pdf/1503.03832v3.pdf

3. 概率脸部嵌入

用于面部识别的当前嵌入方法,能够在受控设置中实现高性能。这些方法通过拍摄一张脸部图像并将有关该脸部的数据存储在潜在的语义空间中而起作用。

但是,当在完全不受控制的设置下进行测试时,当前方法无法正常执行。这是由于在图像中缺少面部特征或模棱两可的情况。这种情况的一个例子是监视视频中的人脸识别,其中视频的质量可能很低。

为了帮助解决这个问题,本文的作者提出了概率面孔嵌入(PFE)。作者提出了一种将现有确定性嵌入转换为PFE的方法。最重要的是,作者指出,这种方法有效地提高了人脸识别模型的性能。

发布/最新更新– 2019年8月7日

作者和贡献者–Yichun Shi and Anil K. Jain, from Michigan State University.

https://arxiv.org/pdf/1904.09658.pdf

4. 人脸识别的魔鬼在噪音中

商汤研究院,加利福尼亚大学圣地亚哥分校和南洋理工大学的研究人员研究了大规模面部图像数据集中的噪声影响。

由于它们的规模和成本效益,许多大型数据集都容易产生标签噪声。本文旨在提供有关标签噪声源及其在人脸识别模型中的后果的知识。此外,他们的目标是建立并发布一个名为IMDb-Face的干净人脸识别数据集。

该研究的两个主要目标是发现噪声对最终性能的影响,并确定注释脸部身份的策略。为此,该团队手动清理了两个流行的张开面部图像数据集,MegaFace和MS-Celeb-1M。他们的实验表明,仅在其清理的MegaFace数据集的32%和MS-Celeb-1M清理的数据集的20%上训练的模型与在整个原始未清理的数据集上训练的模型具有相似的性能。

发布/最新更新– 2018年7月31日

作者和贡献者–Fei Wang (SenseTime), Liren Chen (University of California San Diego), Cheng Li (SenseTime), Shiyao Huang (SenseTime), Yanjie Chen (SenseTime), Chen Qian (SenseTime), and Chen Change Loy (Nanyang Technological University).

https://arxiv.org/pdf/1807.11649v1.pdf

5. VGGFace2:用于识别跨姿势和年龄的人脸的数据集

关于深度卷积神经网络的面部识别已经进行了许多研究。 反过来,已经创建了许多大规模的面部图像数据集来训练那些模型。 但是,本文的作者指出,先前发布的数据集并未包含有关面部姿势和年龄变化的大量数据。

在本文中,牛津大学的研究人员介绍了VGGFace2数据集。 该数据集包含年龄,种族,照明和姿势变化范围广泛的图像。 数据集总共包含331万张图像和9,131个对象。

面部识别 神经网络 人工智能
上一篇:人工智能在企业中开始变得务实 下一篇:2019北京智源大会在京开幕,中外学术大咖共话人工智能研究前沿
评论
取消
暂无评论,快去成为第一个评论的人吧

更多资讯推荐

腾讯AI又创新纪录:ACL 2020入选27篇论文

近日,国际计算语言学协会年会(ACL,The Association for Computational Linguistics)在官网公布了ACL 2020的论文收录名单,共计收录779篇论文。据不完全统计,此次腾讯共有27篇论文入选,投中论文总数刷新国内记录,领跑国内业界AI研究第一梯队。

佚名 ·  2天前
这个受玩具启发打造的致动器或能让软体机器人具备跳跃能力

据外媒报道,不晓得大家有没有玩过popper这个玩具,当将其按下去之后则会跳起来。近日,它给了科研人员灵感,借其打造出一种能有朝一日让软体机器人跨越崎岖地形的致动器。

佚名 ·  3天前
AI助推智慧交通建设加速 警用无人机高速执勤

智慧交通是在整个交通运输领域充分利用物联网、空间感知、云计算、移动互联网等新一代信息技术,综合运用交通科学、系统方法、人工智能、知识挖掘等理论与工具。

佚名 ·  3天前
机器学习算法集锦:从贝叶斯到深度学习及各自优缺点

本文筛选并简单介绍了一些最常见算法类别,还为每一个类别列出了一些实际的算法并简单介绍了它们的优缺点。

佚名 ·  3天前
520快手送“男朋友”GAN生成对抗网络助力单身狗“顺利脱单”

“官宣官宣了,我男朋友帅吧”。昨天是520网络情人节,数万人在快手官宣脱单,这是怎么做到的?原来是快手上线了一款视频特效,让单身的小伙伴们瞬间甜蜜分身,“顺利脱单”。这是快手为用户准备的一系列520特效中的一款,受到用户欢迎。

佚名 ·  3天前
波士顿动力机器狗开始放羊,网友回复:人还没下岗,狗先失业了

据外媒报道,近日机器人企业 Rocos发布了一条短视频,其中显示波士顿动力(Boston Dynamics)的Spot在新西兰的草原上漫游,展示其放羊的技能。

刘海涛 ·  4天前
疫情之下这16大行业亟需技术升级

这场疫情已经造成了商业活动的中断,甚至某些情况这个世界都有些停滞不前了,导致几乎所有行业都在重新思考运转方式。对于某些企业而言,技术系统和运营所要做出改变远大于其他企业,如果你所在的公司正在面临疫情之后的重大变革,你就必须做好准备。

佚名 ·  4天前
为什么语音技术在新冠病毒大流行期间重新流行?

新冠病毒疫情全球大流行导致各国推行严厉的封锁措施,很多人不得不选择待在家里,过多的屏幕使用时间使的语音技术的使用有所增加,但是这种趋势可能会持续更长的时间。

蒙光伟 ·  4天前
Copyright©2005-2020 51CTO.COM 版权所有 未经许可 请勿转载