手把手从EasyDL模型训练到EdgeBoard推理

作者: 佚名 2019-11-13 14:39:56

 摘要:

EdgeBoard是百度打造的基于FPGA的嵌入式AI解决方案系列硬件;EasyDL是百度推出的一站式AI定制化训练和服务平台。本文详细介绍如何使用EasyDL进行模型训练,然后部署到EdgeBoard,缩短从模型训练到推理实现的路径,提高开发效率。

EdgeBoard是百度自主研发的AI软硬一体深度学习加速套件,能够提供强大的算力,并支持定制化模型,适配不同场景的终端设备,大幅提高设备端的AI推理能力,具有高性能、高通用、易集成等优势。EdgeBoard还可以无缝衔接百度大脑的开放能力,可以轻松将在EasyDL和AI Studio平台定制的AI模型完美适配到EdgeBoard上。本文会介绍如何将EasyDL训练的模型离线部署到EdgeBoard上,实现AI的终端应用。

EasyDL定制化训练和服务平台可以一站式定制AI模型,并且完全界面化操作,利用少量的数据就可以训练出一个高精度的AI模型。

图1. EasyDL界面

接下来我们准备以狗的分类作为实例来介绍从训练到推理部署,首先介绍使用EasyDL进行模型训练。

1、选择训练平台

要完成狗的分类,需要使用图像分类模型进行训练,在EasyDL首页中点击开始训练,选择“经典版”训练平台,模型类型选择图像分类,如图2所示。

图2. 模型类型

2、准备数据集

下面是我们准备好的数据,共8分类,每个分类用50张左右的图片用来训练,剩下20张左右用来做推理测试。

图3. 8类狗的照片文件

图4. 狗的照片

3、创建数据集

根据EasyDL训练模型的规则,首先我们创建数据集,将采集好的数据每个种类放到一个文件夹中,如图2所示,再压缩成一个zip文件,然后把数据集上传到EasyDL平台,如图5所示。

图5. 上传数据集到EasyDL平台

4、创建模型

数据集建立完成后,创建模型,根据需要填写相应的信息,如图6所示。

图6. 创建模型

5、训练模型

在训练模型页面中,应用类型选择“离线服务”,算法选择“高精度”和“高性能”都可以,添加数据集,开始训练,如图7所示。

图7. 训练模型

6、发布模型

训练模型需要一定的时间,等模型训练完成之后,我们点击申请发布,跳转到发布模型页面,选择“软硬一体方案”的“EdgeBoard+专用SDK”,提交申请,如图8所示。

图8. 发布模型

五.下载SDK

审核成功后,点击“服务详情”,“下载SDK”,如图9所示。

图9. 下载SDK

至此,在EasyDL上的模型训练结束,接下来将转到EdgeBoard的推理实现上。

在图9中,我们会看到有“管理序列号”的按钮,如果购买了EdgeBoard,跳转页面中会有一个EdgeBoard专用的序列号,这是EasyDL模型在EdgeBoard上部署的通行证。

图10. EdgeBoard专用序列号

下面我们就开始把模型部署到EdgeBoard上,下图是EdgeBoard FZ9A系列硬件,EdgeBoard的技术文档链接是:https://ai.baidu.com/docs#/EdgeBoard%20quick%20start/top

根据该技术文档,需要将EasyDL离线SDK通过FTP或者samba工具传到EdgeBoard系统中,然后将EdgeBoard专用序列号填写到离线SDK中。

图11. EdgeBoard上的文件

EdgeBoard内置Linux系统,我们将使用命令行的方式进行后面的部署操作。由于离线SDK在第一次使用时需要联网激活,因此将EdgeBoard接入路由器,连通外网。

图12. 测试网络连接

同时,将EdgeBoard的时间改成当前时间,否则离线SDK可能会激活失败,

图13.修改本地时间

      然后对离线SDK解压,进入到EasyDL文件夹,解压cpp文件夹中的tar包。

图14. 解压cpp文件中的tar包

      根据官方文档,编辑cpp-->demo文件夹中的demo.cpp文件,将EdgeBoard专用序列号填入指定的位置处,如图15所示,改过之后,在demo文件夹中新建build文件夹,进行编译。

图15. 添加序列号

图16. 编译过程

编译完成后,开始进行模型推理。我们放置一张图片(如图17)到RES文件夹中,调用RES资源文件夹中的模型,以及测试图片的路径,在build下运行命令,如图18所示。

图17. 待测试照片

图18. 执行推理预测

从上面的打印信息中可以看到,EasyDL的模型在EdgeBoard上做出了完美的预测,corgi,分值p=0.999023,说明99%的概率是柯基,是不是很准。如果说这样看起来不直观,EasyDL的SDK还支持http服务的调用,下面来开启一下http服务,如图19所示。

图19. 开启http服务

      开启http服务后,在浏览器中写入https://{EdgeBoard ip地址}:24401,比如EdgeBoard的ip是192.168.1.254,就写https://192.168.1.254:24401就出来如图18的显示界面。

 图20. http服务显示界面

      点击上传图片,选择测试集中的狗的图片,结果就立马出来了,置信度为1说明,百分之百就是可爱的比熊啦!

图21. 上传图片进行推理预测

至此,我们就完成了一个狗分类的模型训练和离线部署。

福利

据可靠小道消息:EdgeBoard正在打折中,历史最低价,降价1000元,有兴趣可以看看:https://aim.baidu.com/product/5b8d8817-9141-4cfc-ae58-640e2815dfd4

EdgeBoard
上一篇:500万AI人才缺口!教育部新增高职人工智能专业 下一篇:CIIE 2019 赛诺菲携手竹间智能打造医药数字化未来
评论
取消
暂无评论,快去成为第一个评论的人吧

更多资讯推荐

面部识别的利与弊:是福还是祸?

虽然现代技术使面部识别更加精确和安全,但与面部识别隐私问题和监控有关的担忧也在增加。因此,让我们在这篇文章中探讨一下这该技术的利与弊。

Naveen Joshi ·  2021-06-01 16:36:22
人工智能和5G如何结合以实现物联网收入最大化

网络系统通过信令和使用软件以及分析来检测和分类设备非常棘手,并且对有限且日益紧张的网络资源提出了巨大的需求。然而,解决这些问题有一个主要解决方案:采用人工智能、自动化和5G技术。

Jordi Castellvi ·  2021-06-01 13:49:15
MIT团队最新研究,仅靠LiDAR和2D地图实现端到端自动驾驶

最近, MIT 计算机科学与人工智能实验室(CSAIL)团队成功展示了一种基于机器学习的自动驾驶系统,该端到端框架仅使用 LiDAR获取的原始 3D 点云数据和类似于手机上的低分辨率 GPS 地图就能进行自主导航,并且大大提升了鲁棒性。

文龙 ·  2021-06-01 12:47:51
自然语言处理(NLP)的历史及其发展方向

自然语言处理的历史是一个充满曲折的故事。它从徒劳的研究开始,经过多年卓有成效的工作,最后结束于一个我们仍在试图找出该领域极限的时代。今天,让我们来一起探索这一AI科学分支的发展。

佚名 ·  2021-06-01 12:46:26
是福还是祸?人脸识别技术的利与弊

面部识别并不是一项全新的技术,但人工智能和机器学习不断使面部识别变得更好。苹果通过引入具有 3D 扫描功能的面部生物识别系统和 iPhone 的 Face ID,提高了面部识别的标准。

Naveen Joshi ·  2021-06-01 11:11:01
人工智能能否使机器具有流体智力?

麻省理工学院和奥地利研究人员为灵活的人工智能创造了“液体”机器学习。

千家网 ·  2021-06-01 10:38:55
高真实感、全局一致、外观精细,面向模糊目标的NeRF方案出炉

自 NeRF 被提出后,有多项研究对其加以改进。在本篇论文中,上海科技大学的研究者提出了首个将显式不透明监督和卷积机制结合到神经辐射场框架中以实现高质量外观的方案。

Haimin Luo等 ·  2021-06-01 09:57:39
大脑模拟NLP,高德纳奖得主:神经元集合演算用于句子解析

一个简单的大脑模型为人工智能研究提供了新的方向。世界顶尖计算机科学理论学家、哥德尔奖和高德纳奖获得者、哥伦比亚大学计算机科学教授 Christos Papadimitriou 关于「大脑中单词表征」的演讲。

Ben Dickson ·  2021-06-01 09:39:24
Copyright©2005-2021 51CTO.COM 版权所有 未经许可 请勿转载