TensorFlow 2.0中文开源书项目:日赞700,登上GitHub热榜

作者: 一鸣 2019-11-18 09:44:51

TensorFlow2.0 正式版已发布一段时间,但目前系统性的相关教程还不够多。这个登上 GitHub 趋势榜的项目今日已获得 700 多赞,内容简单易懂,适合初学者和迁移到 tf2.0 的开发者使用。

深度学习中绕不开的便是对算法框架的实际使用了。如果没有娴熟的工程实践能力,很多优秀的算法设计就无法真正使用。TensorFlow2.0 正式版已发布了一段时间,然而过去使用 TensorFlow1.x 版本的开发者担心两个版本之间的差距过大以至于无法迁移已有的经验,刚入门深度学习的人则因为 TensorFlow 那不友好的 API 和设计逻辑而望而却步。

近日,GitHub 日趋势榜上出现了这样一个中文开源项目。它基于 TensorFlow2.0 框架,有配套学习的书、代码和视频课程,非常适合希望了解 tf2.0 的开发者学习参考。

目前该项目已获得了 1000 多的点赞量,登上了 GitHub 热榜,仅在今天项目就获得 700 多赞。

TensorFlow 2.0中文开源书项目:日赞700,登上GitHub热榜

项目地址:https://github.com/dragen1860/Deep-Learning-with-TensorFlow-book

该项目作者为 Jackie Loong(龙良曲),曾为新加坡国立大学助理研究员,有 8 年的人工智能算法经验,在 AAAI 会议上发表过多篇论文。从他的 GitHub 主页上来看,这位开发者参与了很多深度学习相关的教程项目的工作。

TensorFlow 2.0中文开源书项目:日赞700,登上GitHub热榜

本项目提供了电子版的《TensorFlow 2.0 深度学习开源书》,同时按照章节在每个文件夹中提供了源代码。你只需要下载书籍,并根据内容和源代码进行学习即可。

从章节划分上来看,本书一共分为 15 个章节。首先本书会介绍人工智能的发展历史,然后从第二章开始介绍回归,随后还有分类、TensorFlow 基础和进阶操作、神经网络等知识。在第 10 章以后,书还会介绍包括 CNN、RNN/LSTM、自编码器、GAN 及其变体等多个架构,内容很丰富。

以下为章节目录:

TensorFlow 2.0中文开源书项目:日赞700,登上GitHub热榜

TensorFlow 2.0中文开源书项目:日赞700,登上GitHub热榜

TensorFlow 2.0中文开源书项目:日赞700,登上GitHub热榜

代码部分,目前作者已整理出了除第 4 章以外的大部分代码,目前整理工作还在进行中。

以自编码器的代码为例,作者在 py 文件中详细写出了网络的架构:

  1. class AE(keras.Model):  
  2.   
  3.     def __init__(self):  
  4.         super(AE, self).__init__()  
  5.   
  6.         # Encoders  
  7.         self.encoder = Sequential([  
  8.             layers.Dense(256, activation=tf.nn.relu),  
  9.             layers.Dense(128, activation=tf.nn.relu),  
  10.             layers.Dense(h_dim)  
  11.         ])  
  12.   
  13.         # Decoders  
  14.         self.decoder = Sequential([  
  15.             layers.Dense(128, activation=tf.nn.relu),  
  16.             layers.Dense(256, activation=tf.nn.relu),  
  17.             layers.Dense(784)  
  18.         ])  
  19.   
  20.   
  21.     def call(self, inputs, training=None):  
  22.         # [b, 784] => [b, 10]  
  23.         h = self.encoder(inputs)  
  24.         # [b, 10] => [b, 784]  
  25.         x_hat = self.decoder(h)  
  26.   
  27.         return x_hat  

同时,每个 py 文件不仅仅只有示例代码。从代码来看,这些 py 文件实际上都是可以直接运行的,以下便是自编码器文件中执行模型训练的代码:

  1. model = AE() 
  2. model.build(input_shape=(None, 784)) 
  3. model.summary() 
  4.  
  5. optimizer = tf.optimizers.Adam(lr=lr) 
  6.  
  7. for epoch in range(100): 
  8.  
  9.     for step, x in enumerate(train_db): 
  10.  
  11.         #[b, 2828] => [b, 784
  12.         x = tf.reshape(x, [-1784]) 
  13.  
  14.         with tf.GradientTape() as tape: 
  15.             x_rec_logits = model(x) 
  16.  
  17.             rec_loss = tf.losses.binary_crossentropy(x, x_rec_logits, from_logits=True) 
  18.             rec_loss = tf.reduce_mean(rec_loss) 
  19.  
  20.         grads = tape.gradient(rec_loss, model.trainable_variables) 
  21.         optimizer.apply_gradients(zip(grads, model.trainable_variables)) 
  22.  
  23.  
  24.         if step % 100 ==0
  25.             print(epoch, step, float(rec_loss)) 

这样一来,即使没有编程经验的初学者也可以先跑通代码,理解原理后再尝试自行编程。

除了这些资源外,作者还贴出了一个 tf2.0 实战案例的项目库,开发者可配合使用。

项目地址:https://github.com/dragen1860/TensorFlow-2.x-Tutorials

GitHub 代码 开发者
上一篇:这个中国科学家的救命AI,登上了国外热门榜 下一篇:图像转换3D模型只需5行代码,英伟达推出3D深度学习工具Kaolin
评论
取消
暂无评论,快去成为第一个评论的人吧

更多资讯推荐

深度学习遇上稀缺数据就无计可施?这里有几个好办法!

本文就让我介绍几个在有限的数据上使用深度学习的方法,以及阐述为什么我认为这可能是未来研究中最令人兴奋的领域之一。

xyhncepu ·  1天前
清华、中国人工智能学会重磅发布《2019人工智能发展报告》

2019中国人工智能产业年会重磅发布《2019人工智能发展报告》(Report of Artificial Intelligence Development 2019)。

佚名 ·  2019-12-03 09:10:14
【NCTS峰会回顾】Testin徐琨:AI引领下一代测试,iTestin改写测试未来

2019年10月26日,由Testin主办的第二届NCTS中国云测试行业峰会在京召开。

佚名 ·  2019-11-26 17:38:15
模型秒变API只需一行代码,支持TensorFlow等框架

近日,GitHub 上有了这样一个项目,能够让用户一行代码将任意模型打包为 API。这一工具无疑能够帮助开发者在实际的生产应用中快速部署模型。

一鸣、杜伟 ·  2019-11-26 09:47:50
超好用的自信学习:1行代码查找标签错误,3行代码学习噪声标签

最近,MIT和谷歌的研究人员便提出了一种广义的自信学习(Confident Learning,CL)方法,可以直接估计给定标签和未知标签之间的联合分布。

十三 ·  2019-11-12 13:06:20
Python几行代码,就能预测未来孩子的长相?强大的人工智能

这次花了点时间,将百度智能云里面的人脸识别功能与python结合,进行了一场实验。结果还是蛮有成就感的,过程也挺简单,不会复杂,说不定,你就能融合出你孩子的长相了耶~ 下面我们一起敲起键盘吧!

浪小九 ·  2019-11-06 11:01:57
可自动生成代码,5款基于AI的开发工具

如今,对机器学习潜力感兴趣的程序员都在讨论,如何使用人工智能和基于人工智能的软件开发工具构建应用程序。例如PyTorch和TensorFlow之类的解决方案。

Sandra Parker ·  2019-11-05 18:50:37
四种高性能数据类型,Python collections助你优化代码、简洁任务

在这篇文章中,机器学习工程师 George Seif 介绍了 Python collections 模块最受欢迎的四种数据类型以及它们各自的使用方法。

机器之心 ·  2019-11-04 14:02:12
Copyright©2005-2019 51CTO.COM 版权所有 未经许可 请勿转载