斯坦福大学发布 2019 人工智能指数报告

作者: xplanet 2019-12-16 12:56:22

近日,斯坦福大学人工智能研究所发布了 2019 年 AI 指数报告。该报告涵盖范围较广,以下是一些从报告中提取的主要部分:

对人工智能的研究越来越多,在 1998 年至 2018 年之间,经过同行评审的 AI 论文数量增长了 300% 以上。

中国现在每年出版的 AI 期刊和会议论文数量与欧洲一样多,也超过了美国。不过,美国出版物的“加权引文影响”仍比中国出版物高 50%。

参加 AI 会议的人数继续大幅增加。

在一年半的时间里,在云基础架构上训练大型图像分类系统所需的时间从 2017 年 10 月的约三个小时减少到 2019 年 7 月的约 88 秒;在同一时期,训练这种系统的成本也类似地下降了。

在 SuperGLUE 和 SQuAD2.0 基准测试中,一些广泛的自然语言处理(NLP)分类任务的进展非常迅速;在某些需要推理的 NLP 任务(例如 AI2 推理挑战)或人类水平的概念学习任务(例如 Omniglot 挑战)上,性能仍然较低。

斯坦福大学发布 2019 人工智能指数报告

在美国,人工智能工作的比例从 2012 年的 0.3% 增长到了 2019 年的 0.8%。人工智能的劳动力需求正在增长,尤其是在高科技服务和制造业领域。

在全球范围内,对 AI 初创公司的投资持续稳定增长。从 2010 年筹集的 $1.3B 至 2018 年的 $40.4B(截至 11 月4 日为 $37.4B),资金以超过 48% 的年均增长率增长。

自动驾驶汽车(AVs)在过去一年中获得了全球投资的最大份额,为 $7.7B(占总金额的 9.9%),其次是药物、癌症和治疗($4.7B,6.1%),面部识别($4.7B,6.0%),视频内容($3.6B,4.5%)和诈骗检测及财务($3.1B,3.9%)。

58% 的受访大公司表示,2019 年至少在一个职能或业务部门采用了 AI,高于 2018 年的 47%。

在研究生级别,人工智能已迅速成为北美计算机科学博士学位学生中最受欢迎的专业,其学生人数是第二大最受欢迎的专业(安全性/信息保证)的两倍。在 2018 年,超过 21% 的计算机科学博士专注于人工智能/机器学习。

公平和可解释性被认为是 59 项道德规范 AI 原则中最常提及的道德挑战,AI 的监管、安全性等也是多数人所关心的。

斯坦福大学发布 2019 人工智能指数报告

所有原始数据和图表等均可在 Google 云盘 中找到。

人工智能 斯坦福大学 AI
上一篇:AI辅助开发比人工编写代码快180多倍,程序员是喜还是忧? 下一篇:人工智能存储平台如何满足机器学习和数据分析的需要
评论
取消
暂无评论,快去成为第一个评论的人吧

更多资讯推荐

MIT提出Liquid机器学习系统,可像液体一样适应动态变化

麻省理工学院(MIT)的研究者开发出了一种新型的神经网络,其不仅能在训练阶段学习,而且还能持续不断地适应。

机器之心 ·  2021-02-21 15:47:47
规划智慧城市时,别忘了无障碍通行

要想成为一个智慧城市甚至一个智慧世界,虽然可能需要时间和有针对性的规划,但我们必须以人为本。

蒙光伟 ·  2021-02-21 10:26:41
2021关于人工智能的五大趋势

数字化变革,比过去10年更多,这主要是由于远程工作的规模,以及企业迅速部署了必要的技术,尤其是与网络安全相关的技术。那,2021关于人工智能的五大趋势会是如何的呢?

Lichu ·  2021-02-21 10:21:01
使数据中心更智能:人工智能如何发挥作用?

随着数据成为维持几乎所有业务运营以获取洞察力和业务成果的先决条件,数据中心正处于这种数字化转型的关键。

Cassie ·  2021-02-21 10:14:59
IBM拟出售Watson Health后,AI医疗还能不能碰

医疗服务仍然是一块商业上尚未被完全发掘的市场,看病难/看病贵、医疗资源紧缺、医疗资源不平均等痛点问题长期存在,对应的市场空间理应是巨大的。而Watson Health作为IBM曾寄予厚望的业务方向,为何要在此时萌生退意?它的故事给业界带来哪些启发?眼下的AI医疗市场,究竟是一副什么样的局面呢?

物联传媒 ·  2021-02-21 08:41:16
抛弃归一化,深度学习模型准确率却达到了前所未有的水平

我们知道,在传递给机器学习模型的数据中,我们需要对数据进行归一化(normalization)处理。

机器之心 ·  2021-02-20 21:09:12
华人博士生首次尝试用两个Transformer构建一个GAN

最近,CV 研究者对 transformer 产生了极大的兴趣并取得了不少突破。这表明,transformer 有可能成为计算机视觉任务(如分类、检测和分割)的强大通用模型。

Yifan Jiang ·  2021-02-20 21:04:53
无监督训练用堆叠自编码器是否落伍?ML博士对比了8个自编码器

柏林工业大学深度学习方向博士生 Tilman Krokotsch 在多项任务中对比了 8 种自编码器的性能。

Tilman Krokotsch ·  2021-02-20 20:57:16
Copyright©2005-2021 51CTO.COM 版权所有 未经许可 请勿转载