医疗诊断类AI项目落地的十步走

编译作者: 陈峻 2019-12-17 09:00:00

【51CTO.com快译】众所周知,在医疗保健的各个方面,时间一直被认为是最有价值的部分。即使是数分钟的延迟也可能会导致生命丢失。然而从另一个角度来说,医生花费在每位患者身上的时间却平均只有15分钟。这对于他们去仔细研究患者的详细信息,包括:类似的病例、人口特征与统计学信息等方面,显然是不够的。

近年来,随着AI(人工智能)技术逐步进入医疗保健领域,以前那些被认为是巨大障碍或不太可能的诊疗方法已经变得可行。与此同时,美国有超过90%的医院已经从基于传统的纸张病例系统,转移到了电子化记录与诊断方式上。医生们可以通过AI技术来预测、发现和分析各种重大疾病和罕见病例。

什么是医疗诊断中的AI?

简而言之,医疗诊断中的AI就是通过自动化和预测等技术与方法,协助医疗诊断的过程。通过AI系统,用户可以减少从检查、到发现、再到诊疗之间的时间缺口;医院能够自动化地快速挖掘各种医疗记录,并生成相应的治疗结果建议。此外,一些具有预测分析功能的AI平台,还能够通过机器学习和高级算法,发现患者用药的不规律性,甚至预测患者的死亡率。

根据Frost & Sullivan(译者注:全球知名市场研究与企业咨询公司)在2016年进行过的一项研究表明,医疗保健领域的AI应用具有如下特点:

  • 预测到2021年,市场总值将达到66亿美元。
  • 未来两年的总体增长率将高达40%。
  • 医学影像类的诊断水平将大幅改善。
  • 医疗成果的转换潜力为30%到40%。
  • 潜在的治疗改善成本为50%。

AI在医疗诊断中的重要性

首先,对于医生而言,他们及其所在的医疗保健组织,有机会获取并利用到其他医生的集体知识,以及数百万条患者的病史记录。而且有了AI技术及其系统,他们对于这些记录的访问完全可以实现自动化,并且是基于信息相关性的。整个过程只需要几秒钟便可完成。当然,这只是AI在医疗诊断领域的众多功能中的一项。AI就像一名虚拟化的私人助理,可以根据相似的病例和既有的治疗方案,向医生提供多种建议。

目前,虽然AI尚不具备完全取代医生的能力,但它已经具有了挖掘数据,执行分析,以及识别模型等人类普遍无法达到的能力。AI能够和那些经验丰富的医生相得益彰,全面提高医疗诊断过程的效率与质量。

总的说来,AI在医疗诊断中的作用可以概况为:

  • 改善诊断。
  • 降低成本。
  • 模型识别。
  • 临床相关,高质量和快速度的数据生成。

业界对于医疗诊断类AI的批评

尽管AI在医疗诊断方面有着许多明显的优势,但是人们在应用此项技术时,仍然会产生各种顾虑甚至是批评。其中包括:

  • 无论是要访问高质量的数据,还是要开发用于智能分析的模型,识别对应的特征,以及训练不同的算法,这些都会涉及到高昂的成本。
  • 由于各种软件的分散性与多样性,以及电子病历保存效率不但低下,而且缺乏全面性,许多医疗机构会发现自己的实现模型与其他组织完全无法兼容。这往往会造成弊大于利的情况。
  • 出于安全性的考虑,许多系统都与互联网相隔离,而这就导致了信息共享和数据访问完全无法实现。面对信息孤岛,AI只能苦于缺乏必要的训练数据。
  • 一些较为传统的医疗工作者会将AI的建议,视为对于医生专用水平、乃至权威的挑衅。他们仍然会遵从本能,甚至会出于感情原因做出相反的判断与决定。

如下图所示,根据思科的观点:“在近期受访者中,有54%的医疗保健组织管理者认为在未来的五年内,AI会在本行业内被广泛地采用;36%的患者则对AI缺乏信任,而30%的临床医生甚至对AI的应用持有抵触情绪。”

AI在医疗诊断中的潜力

通过智能化的系统与流程,医生和医院能够及时地识别出那些带有肾功能衰竭、心脏疾病、手术后感染、以及二次住院风险的患者。

大量的电子健康数据与公共数据库信息,可以结合成为强大数据源,让AI系统能够在几秒钟内完成庞杂的研究工作,进而根据相似的病史流行程度,以及患者的过往记录,提出治疗和用药建议,并且计算出成功的几率。

此外,针对某种药物可能对某类人群并无效果的情况,AI系统能够在医生开具处方时,向医生提出警告,甚至是药物风险的揭示。同时,AI分析系统还能够敏锐地捕获患者以往记录中的异常情况。例如:某位患者虽然声称自己从不饮酒,但是他的诸多检测指标却都能表明他有过饮酒的迹象,那么AI系统通过综合分析,就能及时以高亮的方式提请医生的注意。

如下图所示,根据思科的观点:在2018年《肿瘤学年鉴》中,曾有过一项研究:他们让卷积神经网络(CNN)--一种机器学习(ML)系统,与58名皮肤科医生进行了一次较量。通过“观看”超过100,000张恶性与良性肿瘤的图像,人工智能(AI)系统可以准确地检测出95%的黑色素瘤,而人类皮肤科医生只发现了其中的86%。

为了进一步理解AI的用途,下表给出了使用AI最普遍的六大行业。可见,医疗诊断就占有其中的一席之地。

下面我们具体讨论一下医疗诊断类AI项目落地的十步走。

步骤1:使得医疗保健机构的各个成员熟悉上面我们所讨论到的 AI基本功能和优势。这不但有助于他们对AI形成清晰的认识,而且能够帮助他们对AI提出合理的需求,产生切实的期望。

步骤2:识别和发现现有医疗诊断过程中的各类“痛点”。考虑并分析是否可以通过现有的AI相关技术予以解决。通过需求列表的形式,清晰地罗列出AI能给组织带来的真实价值。

步骤3:专注于业务优先级,通过深入分析,权衡采用AI所创造的价值与所涉及到的实施成本之间的关系。这样可以确保每一项投资,都能够直接与其带来的业务价值相匹配。

步骤4:通过向医生、护士、以及医疗工作人员宣介AI的相关技术,让他们参与系统的设计,并提出合理化的建议。由于熟悉业务,并能够深度参与本机构的日常运作,他们往往能够指出技术人员可能忽略掉的细节问题。

步骤5:确定解决方案,组建AI项目团队,招募开发人员,完成编码与测试,并试运行该系统。在此阶段中,为试点项目和后续部署建立清晰的时间表,是项目成败的关键。

步骤6:分配专职的团队成员,负责定期对医疗保健机构进行用户教育,收集系统在部署与运行过程中所碰到的问题,以及督促和确保医护人员能够定期使用该系统。

步骤7:对于组织而言,一脚跨入AI系统难免会有些不适应,以及不可预见的错误。因此,我们应当根据医生、护士、以及医疗工作人员的使用反馈,不断优化系统并按需改进算法。

步骤8:无论是患者的相关数据还是智能算法的信息存储,都是AI系统的重要组成部分。因此,对于每一个希望迈向AI的医疗机构而言,都需要为大量的数据存储需求做好充分的安排。

步骤9:与开发人员进行定期交流,其中涉及到评审现有的AI算法,以及已经采用的数据采集与分析技术。这些沟通能够确保所部署的AI服务,符合医务人员的原始需求,并体现实际的业务价值。

步骤10:在开发过程中寻求AI系统和技术实现能力之间的平衡。这将消除未达到预期的效果,而避免人员的失望情绪。

协助医疗机构进行旧系统的AI转换

每个医疗保健组织都需要根据自身的特定需求,对既有的、特别是那些“遗留”的系统进行评估。对于老旧系统的处置方式,业界经常会用到“迁移”、“现代化”和“转型”等方式,下面我们来看看三者之间的区别:

迁移:医疗机构处置其遗留系统最简单的一种方式。它涉及到将现有系统从一个平台迁移到另一个平台,这是一种在保持系统功能和设计不变的前提下,比较直接有效的方式。不过,随着系统性能的提升,其相应的迁移成本也会增加不少。

现代化:直接对现有系统进行功能与性能等方面的增强。此方法并不涉及将旧的系统迁移到其他平台,只是进行本地升级与功能性的“现代化”。在某种程度上,这是一种折中的方案。

转型:既涉及到上述迁移的活动,又伴随着现代化的提升过程。AI系统的项目落地常会以这种方法对遗留的系统进行全面改造。也就是说,我们一边原地改进既有的某部分系统,一边大刀阔斧地新增具有AI和机器学习能力的平台。

医疗诊断的AI未来

目前,从AI在医疗诊断的应用来看,各种机器学习、智能算法、预测分析、以及自动化数据的分拣与特征提取等技术实现,都能够在一定程度上给传统的诊断方式赋能,并且大幅促进了医生对患者治疗的效率与效果。

原文标题:10 Steps to Execute an AI Transformation Project ,作者:Garron Jhonson

【51CTO译稿,合作站点转载请注明原文译者和出处为51CTO.com】

AI 人工智能 医疗诊断
上一篇:未来增长驱动力?大数据+人工智能正在渗透并将改变我们的生活 下一篇:深度学习已成强弩之末?Bengio等大牛NeurlPS2019上支招
评论
取消
暂无评论,快去成为第一个评论的人吧

更多资讯推荐

微软用 AI 取代人工编辑,解雇多名新闻工作者

微软将解雇 Microsoft News 和 MSN 团队中的数十名新闻工作者和编辑人员。大部分受影响的员工属于 Microsoft SANE(搜索、广告、新闻、Edge 浏览器)部门。

佚名 ·  1天前
云计算人工智能的发展显著改善IT安全性

随着数据泄露越来越普遍,IT安全性变得越来越重要。幸运的是,人工智能工具和云计算资源正在提供新的解决方案。

Harris ·  1天前
人工智能在半导体市场的发展潜力及其意义

IHSMarkit在本周发布的一项人工智能应用调查中预测,到2025年,人工智能应用将从2019年的428亿美元激增至1289亿美元。

佚名 ·  1天前
沙发变身遥控器,涂鸦里藏PCB,MIT技术宅的智能家居竟然是这样

把墙壁、沙发、柱子或者家中任何东西,埋进电路和传感器,整个房子也就被改造成了大型PCB电路板,每一条线路、每一个节点、每一个控制装置,都嵌入到房间自身的装修中,像个变色龙一样,你再也看不到突兀的开关了。

鱼羊 郭一璞 ·  1天前
马云:机器不可能取代人类!那会取代什么呢?

在上海纽约大学2020届毕业生典礼上,阿里巴巴创始人马云表示,“机器是不可能取代人类的”。那什么会被取代呢?

月初 ·  1天前
人工智能的三大领域及其工业应用

在本文中,我将解释人工智能技术的三个主要方向,即语音识别,计算机视觉和自然语言处理。

工业应用 ·  1天前
2020年十大人工智能趋势

人工智能在工作场所中崛起以支持和维持数字化劳动力的趋势是2020年的明显趋势。人工智能,机器学习,神经网络或其他任何花哨的术语行业都应运而生,它被定义为复杂的计算机技术,被广泛用于理解和改善业务和客户体验。

闻数起舞 ·  1天前
人工智能项目:需要注意的七件事

维度R的一份报告显示,十分之八的AI失败了,而96%的AI则在标注,标明和建立模型置信度方面遇到了问题。以下是人工智能项目失败的7个常见原因。

闻数起舞 ·  2天前
Copyright©2005-2020 51CTO.COM 版权所有 未经许可 请勿转载