神仙打架激辩深度学习:LeCun出大招,马库斯放狠话

作者: 鱼羊 十三 2019-12-27 16:27:27

本文经AI新媒体量子位(公众号ID:QbitAI)授权转载,转载请联系出处。

AI学术圈,又吵了起来,图灵奖得主、年近古稀的机器学习奠基者、唱衰AI的代表人物等等,纷纷下场“开怼”。

相关话题在Twitter上转发过千,点赞数万,场面极其激烈。

究其源头,起于一个直击灵魂的问题:什么是深度学习

什么是深度学习?

你可能会很自然地想起那段再熟悉不过的定义:

深度学习(DL)是一类机器学习算法,使用多个层逐步从原始数据中提取更高层的特征。

——维基百科

有点懵逼?

现在,有人给出了更明确的说法,出手者不是旁人,正是深度学习三巨头之一,图灵奖得主Yann LeCun。他说:

有些人似乎仍然对什么是深度学习感到困惑。以下是深度学习的定义:深度学习就是构建由参数化功能模块构成的网络,并利用基于梯度的优化方法进行样本训练。

与此定义正交的是学习范式:强化学习、监督学习或自监督学习。不要说“深度学习没法做X” ,如果你真正想的是“监督学习需要太多数据所以没法做X”。

对于其扩展形态(动态网络、可微编程、图神经网络等),网络结构可以依数据动态变化。

神仙打架激辩深度学习:LeCun出大招,马库斯放狠话

这话之后还没完,他又一口气放出了5个排比句,对当前深度学习领域出现的“术语”进行了解读:

别说“DL对对抗样本很敏感”,你真正的意思是“受监督的卷积神经网络对对抗样本很敏感”。

别说“DL存在偏见”,你真正的意思是“纯监督学习再现了训练数据中的偏见”。

别说“DL无法处理组合性”,你真正的意思是“此特定体系结构不能推广到许多以前不可见的部件组合”。

别说“DL不做逻辑推理”,你真正的意思是“一个简单的前馈神经网络不能做长链的推理”。

别说“DL不做因果推理”,你真正的意思是“一个普通的、有监督的神经网络不会自发地发现因果关系。”

神仙打架激辩深度学习:LeCun出大招,马库斯放狠话

本来是对自己去年初提出的观点——“深度学习不再是流行概念”进行了一次回应。

但谁能想到,推文一出,各路大神纷纷出面发表观点,展开了激烈的讨论。

一场大型“互怼现场”就此拉开序幕。

机器学习奠基人下场激辩

马库斯开杠LeCun

第一批下场的,有DeepMind的高级研究科学家Danilo Jimenez Rezende。

他点赞认同,对Yann LeCun的观点进行了简要总结:

深度学习是用于构建复杂模块化可微函数的工具的集合。讨论深度学习能做或不能做什么毫无意义。真正有意义的是如何训练它,以及如何把数据喂给它。

但知名AI“杠精”——马库斯看到这条推特,当场不干了:

如果不能讨论一种方法可以做什么不能做什么,那它还算是一种方法?

推崇深度学习的人现在为了不被批评,总是在尽量避免提出具体、可验证的主张。这是有一个很危险的信号。

 

机器学习先驱下场反击:深度学习是方法论

对此,机器学习领域奠基人之一、AAAI前主席Thomas G. Dietterich迅速下场回击:

深度学习本来就不是一种方法,而是方法论。是一种研究路径。

神仙打架激辩深度学习:LeCun出大招,马库斯放狠话

结果,这一辩论分会场又炸出了另一位大佬——机器人教父Rodney Brooks。

他说:啊,所以深度学习是AI还是AGI哇?还是说人能想到的未来科技都基于深度学习?

神仙打架激辩深度学习:LeCun出大招,马库斯放狠话

这一发言似乎又点燃了马库斯新的战斗热情:

Rodney Brooks说得对啊!深度学习社区现在给自己的定位就是所有未来科技都将归功于DL,但他们并没有真正致力于任何事情。

等着吧,我马上就会火力全开。

神仙打架激辩深度学习:LeCun出大招,马库斯放狠话

面对这样的“挑衅”,Dietterich表示图样图森破:DL(以及AI社区)的目标是推动智能系统的科学和工程进步,而不是成为嘴炮王者。

神仙打架激辩深度学习:LeCun出大招,马库斯放狠话

深度学习没有定义“是什么”,而是“如何进行”

在各方互怼之外,Keras创造者François Chollet也另开新帖,对“什么是深度学习”发表了观点。

神仙打架激辩深度学习:LeCun出大招,马库斯放狠话

他认为,截至现在,深度学习的定义对他来说过于“严格”。并且和以下情况是相反的:

⑴ 非表征性学习(如SIFT、symbolic AI等人工特征工程);
⑵ “浅层学习(shadow learning)”,其中只有一个特征提取层。

此外,它没有规定一个特定的学习机制(如反向传播)或一个特定的用例(如监督学习或强化学习),也不需要端到端的联合学习。

现在的定义描述的是我们该如何进行深度学习,而不是它是什么

而现在的深度学习的定义,只是给出了一个比较清晰边界:哪些是深度学习,哪些不是。例如:

DNN是深度学习,而遗传编程、快速排序和支持向量机就不属于深度学习。

单个的密集层(dense layer)不是深度学习,而密集堆栈(dense stack)是深度学习。

K-means不是深度学习,而堆叠K-means特征提取器是深度学习。

通常由人类工程师编写的程序不是DL,参数化这样的程序来自动学习一些常量仍然不是DL。

需要用一连串的特征提取器来进行表征学习。

François Chollet认为,深度学习模型只代表了很小很小的程序空间

神仙打架激辩深度学习:LeCun出大招,马库斯放狠话

本来Chollet并未加入论战,谁知道还是被拉下了水。

有好事网友Ben Kamphaus在马库斯的推文下,当场@了他,还有另一位深度学习巨头、图灵奖得主Bengio,他说:

Bengio、Chollet以及其他人正在对需要解决的问题进行实质性的处理了。

不知道那些愤怒高呼让DL研究人员去做他们已经做了很多年工作的人,对解决这个问题有什么帮助。

神仙打架激辩深度学习:LeCun出大招,马库斯放狠话

马库斯则坦然解释说:

我很了解Bengio和Chollet,只是希望他们更坦率些。

你曲解我的意思了。

对于马库斯的这一说法,Bengio和Chollet都没有给出直接回应。

吃瓜群众一脸懵逼

场面上,感觉大半个AI学术圈都下场争鸣了。如此盛景,吃瓜群众不免有些懵逼。

有人问:这个问题这么棘手的吗?

神仙打架激辩深度学习:LeCun出大招,马库斯放狠话

当然,还有一脸懵逼的。

神仙打架激辩深度学习:LeCun出大招,马库斯放狠话

那么,你是怎么看的呢?

第一现场传送门

https://bit.ly/2ZqjKkA

深度学习 编程 人工智能
上一篇:人脸识别技术总结:从传统方法到深度学习 下一篇:【大咖来了 第8期】电商风控利器—移动设备可信ID
评论
取消
暂无评论,快去成为第一个评论的人吧

更多资讯推荐

面部识别的利与弊:是福还是祸?

虽然现代技术使面部识别更加精确和安全,但与面部识别隐私问题和监控有关的担忧也在增加。因此,让我们在这篇文章中探讨一下这该技术的利与弊。

Naveen Joshi ·  2021-06-01 16:36:22
人工智能和5G如何结合以实现物联网收入最大化

网络系统通过信令和使用软件以及分析来检测和分类设备非常棘手,并且对有限且日益紧张的网络资源提出了巨大的需求。然而,解决这些问题有一个主要解决方案:采用人工智能、自动化和5G技术。

Jordi Castellvi ·  2021-06-01 13:49:15
MIT团队最新研究,仅靠LiDAR和2D地图实现端到端自动驾驶

最近, MIT 计算机科学与人工智能实验室(CSAIL)团队成功展示了一种基于机器学习的自动驾驶系统,该端到端框架仅使用 LiDAR获取的原始 3D 点云数据和类似于手机上的低分辨率 GPS 地图就能进行自主导航,并且大大提升了鲁棒性。

文龙 ·  2021-06-01 12:47:51
自然语言处理(NLP)的历史及其发展方向

自然语言处理的历史是一个充满曲折的故事。它从徒劳的研究开始,经过多年卓有成效的工作,最后结束于一个我们仍在试图找出该领域极限的时代。今天,让我们来一起探索这一AI科学分支的发展。

佚名 ·  2021-06-01 12:46:26
是福还是祸?人脸识别技术的利与弊

面部识别并不是一项全新的技术,但人工智能和机器学习不断使面部识别变得更好。苹果通过引入具有 3D 扫描功能的面部生物识别系统和 iPhone 的 Face ID,提高了面部识别的标准。

Naveen Joshi ·  2021-06-01 11:11:01
人工智能能否使机器具有流体智力?

麻省理工学院和奥地利研究人员为灵活的人工智能创造了“液体”机器学习。

千家网 ·  2021-06-01 10:38:55
大脑模拟NLP,高德纳奖得主:神经元集合演算用于句子解析

一个简单的大脑模型为人工智能研究提供了新的方向。世界顶尖计算机科学理论学家、哥德尔奖和高德纳奖获得者、哥伦比亚大学计算机科学教授 Christos Papadimitriou 关于「大脑中单词表征」的演讲。

Ben Dickson ·  2021-06-01 09:39:24
美城市Baltimore可能颁布最严格的面部识别禁令

据介绍,拟议的法令将禁止私人或商业组织,甚至执法机构在城市使用面部识别技术。

千家网 ·  2021-06-01 09:34:07
Copyright©2005-2021 51CTO.COM 版权所有 未经许可 请勿转载