神仙打架激辩深度学习:LeCun出大招,马库斯放狠话

作者: 鱼羊 十三 2019-12-27 16:27:27

本文经AI新媒体量子位(公众号ID:QbitAI)授权转载,转载请联系出处。

AI学术圈,又吵了起来,图灵奖得主、年近古稀的机器学习奠基者、唱衰AI的代表人物等等,纷纷下场“开怼”。

相关话题在Twitter上转发过千,点赞数万,场面极其激烈。

究其源头,起于一个直击灵魂的问题:什么是深度学习

什么是深度学习?

你可能会很自然地想起那段再熟悉不过的定义:

深度学习(DL)是一类机器学习算法,使用多个层逐步从原始数据中提取更高层的特征。

——维基百科

有点懵逼?

现在,有人给出了更明确的说法,出手者不是旁人,正是深度学习三巨头之一,图灵奖得主Yann LeCun。他说:

有些人似乎仍然对什么是深度学习感到困惑。以下是深度学习的定义:深度学习就是构建由参数化功能模块构成的网络,并利用基于梯度的优化方法进行样本训练。

与此定义正交的是学习范式:强化学习、监督学习或自监督学习。不要说“深度学习没法做X” ,如果你真正想的是“监督学习需要太多数据所以没法做X”。

对于其扩展形态(动态网络、可微编程、图神经网络等),网络结构可以依数据动态变化。

神仙打架激辩深度学习:LeCun出大招,马库斯放狠话

这话之后还没完,他又一口气放出了5个排比句,对当前深度学习领域出现的“术语”进行了解读:

别说“DL对对抗样本很敏感”,你真正的意思是“受监督的卷积神经网络对对抗样本很敏感”。

别说“DL存在偏见”,你真正的意思是“纯监督学习再现了训练数据中的偏见”。

别说“DL无法处理组合性”,你真正的意思是“此特定体系结构不能推广到许多以前不可见的部件组合”。

别说“DL不做逻辑推理”,你真正的意思是“一个简单的前馈神经网络不能做长链的推理”。

别说“DL不做因果推理”,你真正的意思是“一个普通的、有监督的神经网络不会自发地发现因果关系。”

神仙打架激辩深度学习:LeCun出大招,马库斯放狠话

本来是对自己去年初提出的观点——“深度学习不再是流行概念”进行了一次回应。

但谁能想到,推文一出,各路大神纷纷出面发表观点,展开了激烈的讨论。

一场大型“互怼现场”就此拉开序幕。

机器学习奠基人下场激辩

马库斯开杠LeCun

第一批下场的,有DeepMind的高级研究科学家Danilo Jimenez Rezende。

他点赞认同,对Yann LeCun的观点进行了简要总结:

深度学习是用于构建复杂模块化可微函数的工具的集合。讨论深度学习能做或不能做什么毫无意义。真正有意义的是如何训练它,以及如何把数据喂给它。

但知名AI“杠精”——马库斯看到这条推特,当场不干了:

如果不能讨论一种方法可以做什么不能做什么,那它还算是一种方法?

推崇深度学习的人现在为了不被批评,总是在尽量避免提出具体、可验证的主张。这是有一个很危险的信号。

 

机器学习先驱下场反击:深度学习是方法论

对此,机器学习领域奠基人之一、AAAI前主席Thomas G. Dietterich迅速下场回击:

深度学习本来就不是一种方法,而是方法论。是一种研究路径。

神仙打架激辩深度学习:LeCun出大招,马库斯放狠话

结果,这一辩论分会场又炸出了另一位大佬——机器人教父Rodney Brooks。

他说:啊,所以深度学习是AI还是AGI哇?还是说人能想到的未来科技都基于深度学习?

神仙打架激辩深度学习:LeCun出大招,马库斯放狠话

这一发言似乎又点燃了马库斯新的战斗热情:

Rodney Brooks说得对啊!深度学习社区现在给自己的定位就是所有未来科技都将归功于DL,但他们并没有真正致力于任何事情。

等着吧,我马上就会火力全开。

神仙打架激辩深度学习:LeCun出大招,马库斯放狠话

面对这样的“挑衅”,Dietterich表示图样图森破:DL(以及AI社区)的目标是推动智能系统的科学和工程进步,而不是成为嘴炮王者。

神仙打架激辩深度学习:LeCun出大招,马库斯放狠话

深度学习没有定义“是什么”,而是“如何进行”

在各方互怼之外,Keras创造者François Chollet也另开新帖,对“什么是深度学习”发表了观点。

神仙打架激辩深度学习:LeCun出大招,马库斯放狠话

他认为,截至现在,深度学习的定义对他来说过于“严格”。并且和以下情况是相反的:

⑴ 非表征性学习(如SIFT、symbolic AI等人工特征工程);
⑵ “浅层学习(shadow learning)”,其中只有一个特征提取层。

此外,它没有规定一个特定的学习机制(如反向传播)或一个特定的用例(如监督学习或强化学习),也不需要端到端的联合学习。

现在的定义描述的是我们该如何进行深度学习,而不是它是什么

而现在的深度学习的定义,只是给出了一个比较清晰边界:哪些是深度学习,哪些不是。例如:

DNN是深度学习,而遗传编程、快速排序和支持向量机就不属于深度学习。

单个的密集层(dense layer)不是深度学习,而密集堆栈(dense stack)是深度学习。

K-means不是深度学习,而堆叠K-means特征提取器是深度学习。

通常由人类工程师编写的程序不是DL,参数化这样的程序来自动学习一些常量仍然不是DL。

需要用一连串的特征提取器来进行表征学习。

François Chollet认为,深度学习模型只代表了很小很小的程序空间

神仙打架激辩深度学习:LeCun出大招,马库斯放狠话

本来Chollet并未加入论战,谁知道还是被拉下了水。

有好事网友Ben Kamphaus在马库斯的推文下,当场@了他,还有另一位深度学习巨头、图灵奖得主Bengio,他说:

Bengio、Chollet以及其他人正在对需要解决的问题进行实质性的处理了。

不知道那些愤怒高呼让DL研究人员去做他们已经做了很多年工作的人,对解决这个问题有什么帮助。

神仙打架激辩深度学习:LeCun出大招,马库斯放狠话

马库斯则坦然解释说:

我很了解Bengio和Chollet,只是希望他们更坦率些。

你曲解我的意思了。

对于马库斯的这一说法,Bengio和Chollet都没有给出直接回应。

吃瓜群众一脸懵逼

场面上,感觉大半个AI学术圈都下场争鸣了。如此盛景,吃瓜群众不免有些懵逼。

有人问:这个问题这么棘手的吗?

神仙打架激辩深度学习:LeCun出大招,马库斯放狠话

当然,还有一脸懵逼的。

神仙打架激辩深度学习:LeCun出大招,马库斯放狠话

那么,你是怎么看的呢?

第一现场传送门

https://bit.ly/2ZqjKkA

深度学习 编程 人工智能
上一篇:人脸识别技术总结:从传统方法到深度学习 下一篇:【大咖来了 第8期】电商风控利器—移动设备可信ID
评论
取消
暂无评论,快去成为第一个评论的人吧

更多资讯推荐

云计算人工智能的发展显著改善IT安全性

随着数据泄露越来越普遍,IT安全性变得越来越重要。幸运的是,人工智能工具和云计算资源正在提供新的解决方案。

Harris ·  1天前
人工智能在半导体市场的发展潜力及其意义

IHSMarkit在本周发布的一项人工智能应用调查中预测,到2025年,人工智能应用将从2019年的428亿美元激增至1289亿美元。

佚名 ·  1天前
沙发变身遥控器,涂鸦里藏PCB,MIT技术宅的智能家居竟然是这样

把墙壁、沙发、柱子或者家中任何东西,埋进电路和传感器,整个房子也就被改造成了大型PCB电路板,每一条线路、每一个节点、每一个控制装置,都嵌入到房间自身的装修中,像个变色龙一样,你再也看不到突兀的开关了。

鱼羊 郭一璞 ·  1天前
马云:机器不可能取代人类!那会取代什么呢?

在上海纽约大学2020届毕业生典礼上,阿里巴巴创始人马云表示,“机器是不可能取代人类的”。那什么会被取代呢?

月初 ·  1天前
人工智能的三大领域及其工业应用

在本文中,我将解释人工智能技术的三个主要方向,即语音识别,计算机视觉和自然语言处理。

工业应用 ·  1天前
2020年十大人工智能趋势

人工智能在工作场所中崛起以支持和维持数字化劳动力的趋势是2020年的明显趋势。人工智能,机器学习,神经网络或其他任何花哨的术语行业都应运而生,它被定义为复杂的计算机技术,被广泛用于理解和改善业务和客户体验。

闻数起舞 ·  1天前
人工智能项目:需要注意的七件事

维度R的一份报告显示,十分之八的AI失败了,而96%的AI则在标注,标明和建立模型置信度方面遇到了问题。以下是人工智能项目失败的7个常见原因。

闻数起舞 ·  2天前
2020年第一季度人工智能的最新进展

人工智能曾经只是科幻小说,是计算世界的遥不可及的梦想,如今已成为现实。 人工智能,简称AI,是用来描述机器模拟人类智能的能力。

闻数起舞 ·  2天前
Copyright©2005-2020 51CTO.COM 版权所有 未经许可 请勿转载