Facebook开源算法代码库PySlowFast,轻松复现前沿视频理解模型

作者: 佚名 2020-01-07 14:37:59

 在近些年的视频理解研究中,Facebook AI Research 贡献了许多精彩的工作。近日,FAIR视频团队在 ICCV 相关研讨会上开源了视频识别检测代码库 PySlowFast,并同时发布了预训练的模型库。同时,该团队表示,他们还将实时将他们的前沿工作添加至此代码库。

Facebook开源算法代码库PySlowFast,轻松复现前沿视频理解模型

  • 项目地址:https://github.com/facebookresearch/SlowFast
  • Tutorial 地址(附 PPTT 资源):https://alexanderkirillov.github.io/tutorials/visual-recognition-iccv19/

视频与动作理解俨然已成为当今最火热的研究方向之一,然而在开源社区中找到一个简洁、高效、易于修改的视频理解代码库仍不是一件简单的事情。更重要的是,复现当今前沿的 (state-of-the-art) 的深度学习模型一直是一件令研究者头疼的事情。

这些视频理解模型往往动辄几十 GFlops,需要训练数天,而复现出一个模型需要反复的实验调参,让每个细节都正确。这往往会耗费大量的时间和资源,让很多研究者望而却步。

Facebook开源算法代码库PySlowFast,轻松复现前沿视频理解模型

Facebook AI Research 在 CVPR、ICCV 等国际会议发布了众多研究工作,并赢得了 CVPR 2019 行为检测挑战赛的冠军。而后,在今年的 ICCV 上,FAIR 推出了他们的视频理解代码库:PySlowFast。
PySlowfast 是一个基于 PyTorch 的代码库,让研究者可以轻而易举地复现从基础至前沿的视频识别 (Video Classification) 和行为检测 (Action Detection) 算法。

不但如此,PySlowFast 代码库同时开源了大量预训练模型 (pretrain models),让研究者省去了反复训练模型的烦恼,可以直接使用 FAIR 预训练的前沿 (cutting edge performance) 模型。

pySlowFast开源的模型的可视化检测结果

自开源后,PySlowFast 就一度蝉联 GitHub 趋势榜前十。以下对此开源项目进行了简要介绍。

根据研讨会教程和开源代码库信息,PySlowFast 既提供视频理解基线(baseline)模型,还提供了当今前沿的视频理解算法复现。其算法不单单囊括视频视频(video classification),同时也包括行为检测(Action Classification)算法。

与当今开源社区中各种视频识别库复现出参差不齐的性能相比,使用 PySlowFast 可轻而易举地复现出当今前沿的模型。

视频识别(Kinetics)

Facebook开源算法代码库PySlowFast,轻松复现前沿视频理解模型

表 1:PySlowFast 在视频分类数据库 Kinetics 400 上的性能)(节选自 https://github.com/facebookresearch/SlowFast/blob/master/MODEL_ZOO.md)

PySlowFast 不单单可以用于视频分类,同时也可用于视频理解,并提供赢得了 2019 年 CVPR ActivityNet Challenge Winner 的视频检测模型。
行为检测(AVA)

Facebook开源算法代码库PySlowFast,轻松复现前沿视频理解模型

此外,PySlowFast 预留了接口,可通过简单的编辑支持多模态视频理解、视频自监督学习等等任务。该团队称,PySlowFast 将被积极维护,实时更新其团队和业界的前沿算法,同开源其预训练模型,使代码库成为视频理解领域的基线标杆。

通过以下教程,读者们可以简单试用下 PySlowFast 代码库。在完成安装后,通过下载 MODEL_ZOO 提供的预训练模型和相应的配置文件,运行如下代码,就可以测试(Test)模型在不同视频数据库上的性能:

  1. python tools/run_net.py  
  2.   --cfg configs/Kinetics/C2D_8x8_R50.yaml  
  3.   DATA.PATH_TO_DATA_DIR path_to_your_dataset  
  4.   NUM_GPUS 2  

我们可以发现,通过此代码库可以轻易复现出前沿的高性能模型,同时读者们也可以尝试通过简单的修改来实现自己的模型,并用多台 GPU 进行训练得到前沿的性能。

代码 开发 AI
上一篇:一文看尽2019年NLP前沿突破 下一篇:阿里达摩院发布2020十大科技趋势!人工智能、区块链、芯片成焦点
评论
取消
暂无评论,快去成为第一个评论的人吧

更多资讯推荐

关于AI在游戏领域的5个预测,你不一定都知道

未来,人工智能的发展将如何帮助开发者创造更好的游戏呢?以下是对人工智能在游戏产业中的5个预测。

Yu ·  13h前
人工干预如何提高模型性能?看这文就够了

下面我先从使用机器学习模型来推理系统入手,再展开人工干预的推理循环的技术介绍。

AI科技大本营 ·  1天前
谷歌大脑最新操作玩“复古”:不用卷积注意力,图像分类接近SOTA

这个架构名为MLP-Mixer,采用两种不同类型的MLP层,可以看做是一个特殊的CNN,使用 1×1卷积进行通道混合(按位操作),同时全感受野和参数共享的的单通道深度卷积进行字符混合(跨位操作)。

佚名 ·  1天前
企业如何布局人工智能并从中获取价值

人工智能很快就会改变我们的日常生活方式。各大公司是否已经准备好从即将来临的创新浪潮中获取价值?

Gaurav Batra ·  1天前
谷歌人工智能实验室DeepMind将在加拿大招募研究人员

2014年被谷歌收购的位于伦敦的人工智能实验室DeepMind将其寻找世界上最好的人工智能研究人员的工作扩展到了加拿大多伦多。

Yu ·  2天前
5G警用机器人上岗护航五一节日安保

2021年5月1日,"五一小长假"第一天,浙江省舟山市公安局普陀区分局东港派出所民警带领5G警用机器人在舟山市普陀区杉杉广场商圈上岗,承担智能防疫、巡逻防控、防范宣传等工作任务,护航五一节日安保。

光明网 ·  3天前
就业的未来:到2030年哪些职业将会消失?

强大的新技术正在提高生产力,改善生活,重塑我们的世界。但是它们所取代的工作又会怎样呢?

Cassie ·  2021-04-30 17:24:35
机器学习新算法更好描述量子系统模型

近日,英国布里斯托大学量子工程技术实验室的研究人员在《自然·物理学》杂志上发表一篇新论文,解释了一种通过充当自主代理,使用机器学习对哈密顿模型进行逆向工程的算法。这种新算法对量子系统基本物理原理提供了宝贵见解,有望带来量子计算和传感领域的重大进步,并有可能翻开科学研究的新篇章。

张佳欣 ·  2021-04-30 15:12:07
Copyright©2005-2021 51CTO.COM 版权所有 未经许可 请勿转载