计算机视觉项目:10个高质量开源数据集发布

作者: 钛灵创新 2020-01-09 11:30:40

计算机视觉正在加速行业中几乎每个领域的发展。 在计算机视觉技术的帮助下,组织正在彻底改变机器以前的工作方式。 现在,全球各地的大型技术都在利用计算机视觉技术领域,例如医疗保健和自动驾驶等。 为了建立强大的计算机视觉深度学习模型,必须在训练阶段应用高质量的数据集。

计算机视觉项目:10个高质量开源数据集发布

在本文中,我们将列出10个可用于Computer Vision项目的高质量数据集。

1 | CIFAR-10

计算机视觉项目:10个高质量开源数据集发布

CIFAR-10是Alex Krizhevsky,Vinod Nair和Geoffrey Hinton收集的一种流行的计算机视觉数据集。 该数据集用于对象识别,由10类60,000张32×32彩色图像组成,每类6,000张图像。 它分为五个训练批次和一个测试批次,每个批次具有10,000张图像,这意味着有50,000个训练图像和10,000个测试图像。

2 | Cityscapes

计算机视觉项目:10个高质量开源数据集发布

Cityscapes是Computer Vision项目的开源大规模数据集,其中包含来自50个不同城市的街道场景中记录的各种立体视频序列。它包括5,000个帧的高质量像素级注释,以及20,000个弱注释帧的较大集合。 该数据集主要用于训练深度神经网络和评估视觉算法对语义城市场景理解的主要任务的性能。

3 | Fashion MNIST

计算机视觉项目:10个高质量开源数据集发布

Fashion-MNIST是用于Computer Vision的图像数据集,包含60,000个示例的训练集和10,000个示例的测试集。 在此数据集中,每个示例都是一个28×28灰度图像,与来自10个类别的标签关联。 有一个基于Scikit-learn的自动基准测试系统,该系统涵盖129个具有不同参数的分类器。

4 | ImageNet

计算机视觉项目:10个高质量开源数据集发布

ImageNet是计算机视觉项目最受欢迎的数据集之一,它提供了一个可访问的图像数据库,该数据库根据WordNet层次结构进行组织。WordNet中有超过100,000个同义词集,其中ImageNet提供平均1,000个图像来说明WordNet中的每个同义词集。 它为WordNet层次结构中的大多数概念提供了数千万个干净排序的图像。

5| IMDB-Wiki Dataset

计算机视觉项目:10个高质量开源数据集发布

IMDB-Wiki数据集是使用性别和年龄标签进行训练的最大的开放式人脸图像数据集之一。此数据集中总共有523,051张面部图像,其中从IMDB的20,284名名人和维基百科的62,328名名人获得了460,723张面部图像。

6 | Kinetics-700

计算机视觉项目:10个高质量开源数据集发布

Kinetics-700是YouTube视频URL的大规模高质量数据集,其中包括各种以人为中心的动作。 数据集包括大约650,000个视频剪辑,涵盖700个人类动作类,每个动作类至少包含600个视频剪辑。 在这里,每个剪辑持续约10秒钟,并标有一个类别。

7 | MS Coco

计算机视觉项目:10个高质量开源数据集发布

COntext中的COCO或Common Objects是大规模的对象检测,分割和字幕数据集。 数据集包含91个对象类型的照片,这些照片易于识别,并且在328k图像中总共有250万个带标签的实例。

8| MPII Human Pose Dataset

计算机视觉项目:10个高质量开源数据集发布

MPII Human Pose数据集用于评估关节式人体姿势估计。 该数据集包含约25K图像,其中包含超过4万名带注释的人体关节的人。 在这里,每张图片都是从YouTube视频中提取的,并带有未标注帧之前的an和an。 总体而言,数据集涵盖410种人类活动,并且每个图像都带有活动标签。

9| Open Images

此Open Images数据集是现有的最大的带有对象位置注释的数据集之一。 它由大约900万幅图像组成,这些图像带有图像级标签,对象边界框,对象分割蒙版和视觉关系。 数据集包含190万幅图像上600个对象类别的1600万个边界框。

10| The 20BN-something-something Dataset V2

计算机视觉项目:10个高质量开源数据集发布

20BN-Something-Something数据集是大量带有密集标签的视频剪辑的集合,这些视频剪辑向人们展示了人类对日常对象执行的预定义基本动作。 它是由大量的人群工作人员创建的,它允许ML模型对物理世界中发生的基本动作有更细致的了解。 视频总数包括220,847,其中168,913是训练集,24,777是验证集,27,157是测试集。

Model Play是面向全球开发者的AI模型资源平台,内置多样化AI模型,与钛灵AIX(一款集计算机视觉与智能语音交互两大核心功能为一体的人工智能硬件)结合,基于Google开源神经网络架构及算法,构建自主迁移学习功能,无需写代码,通过选择图片、定义模型和类别名称即可完成AI模型训练。

计算机视觉项目:10个高质量开源数据集发布
AI 数据 人工智能
上一篇:2019年,巨头们都在“AI+教育”圈内干了些啥? 下一篇:审视全球十大AI事件,AI治理如何做到趋利避害
评论
取消
暂无评论,快去成为第一个评论的人吧

更多资讯推荐

面部识别的利与弊:是福还是祸?

虽然现代技术使面部识别更加精确和安全,但与面部识别隐私问题和监控有关的担忧也在增加。因此,让我们在这篇文章中探讨一下这该技术的利与弊。

Naveen Joshi ·  2021-06-01 16:36:22
人工智能和5G如何结合以实现物联网收入最大化

网络系统通过信令和使用软件以及分析来检测和分类设备非常棘手,并且对有限且日益紧张的网络资源提出了巨大的需求。然而,解决这些问题有一个主要解决方案:采用人工智能、自动化和5G技术。

Jordi Castellvi ·  2021-06-01 13:49:15
MIT团队最新研究,仅靠LiDAR和2D地图实现端到端自动驾驶

最近, MIT 计算机科学与人工智能实验室(CSAIL)团队成功展示了一种基于机器学习的自动驾驶系统,该端到端框架仅使用 LiDAR获取的原始 3D 点云数据和类似于手机上的低分辨率 GPS 地图就能进行自主导航,并且大大提升了鲁棒性。

文龙 ·  2021-06-01 12:47:51
自然语言处理(NLP)的历史及其发展方向

自然语言处理的历史是一个充满曲折的故事。它从徒劳的研究开始,经过多年卓有成效的工作,最后结束于一个我们仍在试图找出该领域极限的时代。今天,让我们来一起探索这一AI科学分支的发展。

佚名 ·  2021-06-01 12:46:26
是福还是祸?人脸识别技术的利与弊

面部识别并不是一项全新的技术,但人工智能和机器学习不断使面部识别变得更好。苹果通过引入具有 3D 扫描功能的面部生物识别系统和 iPhone 的 Face ID,提高了面部识别的标准。

Naveen Joshi ·  2021-06-01 11:11:01
人工智能能否使机器具有流体智力?

麻省理工学院和奥地利研究人员为灵活的人工智能创造了“液体”机器学习。

千家网 ·  2021-06-01 10:38:55
高真实感、全局一致、外观精细,面向模糊目标的NeRF方案出炉

自 NeRF 被提出后,有多项研究对其加以改进。在本篇论文中,上海科技大学的研究者提出了首个将显式不透明监督和卷积机制结合到神经辐射场框架中以实现高质量外观的方案。

Haimin Luo等 ·  2021-06-01 09:57:39
大脑模拟NLP,高德纳奖得主:神经元集合演算用于句子解析

一个简单的大脑模型为人工智能研究提供了新的方向。世界顶尖计算机科学理论学家、哥德尔奖和高德纳奖获得者、哥伦比亚大学计算机科学教授 Christos Papadimitriou 关于「大脑中单词表征」的演讲。

Ben Dickson ·  2021-06-01 09:39:24
Copyright©2005-2021 51CTO.COM 版权所有 未经许可 请勿转载