赢在起跑线,数据科学必备5大技能

作者: 读芯术 2020-01-16 19:03:04

 数据科学领域竞争激烈,人们正在迅速发展越来越多的技能和经验。

“R、Python、SQL和机器学习”一直是数据科学家的标配。但随着这个领域的发展,这些技能已经渐渐不足以在就业市场上保持竞争力了。

2020年,为了不被时代淘汰,数据科学家也需要发展开发人员的技术。

下面小芯就为大家整理了,2020数据科学必备的5大技能,请收好~

1. CloudandBigData

机器学习产业化对数据科学家的约束越来越严重,同时也成为数据工程师乃至整个IT行业的严重约束。

在数据科学家可以致力于减少模型所需时间的情况下,IT人员可以通过更快的计算服务来做出贡献,如:

  • Cloud:将计算资源转移到外部供应商(如AWS、MicrosoftAzure或GoogleCloud),可以很容易地建立一个可以从远程访问的非常快速的机器学习环境。这就要求数据科学家对云功能有一个基本的了解,例如使用远程服务器而不是自己的计算机,或者使用Linux而不是Windows/Mac。
2020​赢在起跑线,数据科学必备5大技能

PySpark正在为parallel(BigData)系统编写Python

  • BigData:快速学习IT的第二个方面是使用Hadoop和Spark,这两种工具允许同时在许多计算机上并行处理任务(工作节点)。这要求数据科学家使用不同的方法来开发模型,因为代码必须允许并行执行。

2. NLP, NeuralNetworksandDeepLearning

最近,一位数据科学家仍坚持,NLP和图像识别仅仅是数据科学的专业,并非所有人都必须掌握。

2020​赢在起跑线,数据科学必备5大技能

你需要理解深度学习:基于人脑思想的机器学习

但是,图像分类和NLP的用例越来越频繁,甚至在“常规”业务中也是如此。如今,对这种模式有一个基本的了解已经成为行业最低标准。

就算你的工作中没有此类模型的直接应用程序,实际操作的项目也很容易找到,并且可以让你理解图像和文本项目中所需的步骤。

3. Agile

Agile是一种组织工作的方法,已得到开发团队大量使用。越来越多的人涉足数据科学领域,他们最初的技能是纯软件开发,机器学习工程师的角色也应运而生。

2020​赢在起跑线,数据科学必备5大技能

Post-its和Agile似乎是并驾齐驱的

越来越多的数据科学家或机器学习工程师被视为开发人员:不断改进现有的代码库中的机器学习元素。

对于这类角色,数据科学家必须了解基于Scrum方法的Agile工作方式。它为不同的人定义了不同的角色,这种角色定义保证了持续改进和顺利实施。

4. Industrialization

在数据科学领域,我们思考项目的方式也在发生变化。数据科学家一如既往地用机器学习来回答商业问题。然而,越来越多数据科学项目为生产系统开发,例如,大型软件中的微服务。

2020​赢在起跑线,数据科学必备5大技能

AWS是比较大的云供应商

与此同时,高级模型的CPU和RAM消耗也越来越大,尤其是在使用神经网络和深度学习时。

就数据科学家的工作要求而言,不仅要考虑模型的准确性,还要考虑项目的执行时间或其他工业化方面,这一点变得越来越重要。

2020​赢在起跑线,数据科学必备5大技能

和微软一样,谷歌也有云服务

5. Github

Git和Github是面向开发人员的软件,能够管理不同版本的软件。它们跟踪对代码库所做的所有更改,此外,当多个开发人员同时对同一个项目进行更改时,此类软件能够真正增加协作便利性。

2020​赢在起跑线,数据科学必备5大技能

GitHub是个不错的选择

随着数据科学家的角色变得越来越重要,能够处理这些开发工具就成了关键。Git正成为一项严肃的工作要求,要适应最好的使用Git,是需要时间的。当你一个人或者和新同事一起,研究Git很容易,但是当你作为一个新人加入一个Git专家团队,你可能会比想象的还要更难适应。

Git是GitHub真正所需的技能

为了保持竞争力,一定要为运用新工具及接受新工作方式而做好准备,加油!

机器学习 软件 工程师
上一篇:2020年人工智能如何发展?这6大趋势你不可不知 下一篇:关于人工智能,2020年必考的十大趋势
评论
取消
暂无评论,快去成为第一个评论的人吧

更多资讯推荐

数据机器学习在故障检测中的应用

本文将简要介绍几种在故障诊断领域广泛应用的机器学习技术及其各自的应用方向,并对每种技术的优缺点进行简单分析。包括:贝叶斯网络(BN),人工神经网络(ANN),支持向量机(SVM)和隐马尔可夫模型(HMM)技术。

交能网 ·  20h前
人工智能如何改造旅游业

旅游业正在慢慢地将人工智能融入到行业当中,并为游客提供个性化定制体验。在人工智能的帮助下,旅游业的业务流程和客户服务都发生了改变。

佚名 ·  1天前
治愈大脑,人机共生,马斯克为“脑机接口”辩护

随着今年年初特斯拉中国工厂正式开始交付特斯拉 model3 型号电动汽车,特斯拉的股值不断飙升,与此同时特斯拉和马斯克也在新闻媒体上赚足了眼球。

学术君 ·  2天前
如何在Kaggle上打比赛,带你进行一次完整流程体验

Kaggle是一个磨练您的机器学习和数据科学技能的好地方,您可以将自己与他人进行比较,并学习新的技术。在这篇文章中,我们利用一个典型的例子,来给大家演示如何参加Kaggle竞赛。

机器学习与数据分析 ·  2天前
一文读懂即将引爆的TinyML:在边缘侧实现超低功耗机器学习

人工智能AI正在加快速度从“云端”走向“边缘”,进入到越来越小的物联网设备中。在终端和边缘侧的微处理器上,实现的机器学习过程,被称为微型机器学习,即TinyML。

物女王 ·  3天前
谷歌发布TyDi QA语料库,涵盖11种不同类型语言

为了鼓励对多语言问答技术的研究,谷歌发布了 TyDi QA,这是一个涵盖了 11 种不同类型语言的问答语料库。

Jonathan Clark ·  3天前
机器学习所需的工程量未来会大大减少 精选

未来,构建 ML 产品将更加有趣,并且这些系统会工作得更好。随着 ML 自动化工具的不断改进,数据科学家和 ML 工程师将把更多的时间花在构建优秀的模型上,而花在与生产级 ML 系统相关的繁琐但必要的任务上的时间会更少。

David LiCause ·  4天前
意料之外 情理之中:解读Gartner 2020年数据科学和机器学习平台魔力象限

最近Gartner发布了数据科学和机器学习(DSML)平台魔力象限报告。数据科学、机器学习和人工智能的市场格局极为分散,竞争激烈且难以理解。Gartner尝试根据明确定义的标准对厂商进行了排名。

佚名 ·  2020-02-21 17:23:21
Copyright©2005-2020 51CTO.COM 版权所有 未经许可 请勿转载