阿里开源MNNKit:基于MNN的移动端深度学习SDK,支持安卓和iOS

作者: 一鸣、Jamin 2020-01-23 15:08:02

 近来,有越来越多的深度学习框架开始面向移动端进行发展。近日,阿里也基于其 MNN推理引擎开源了最新的 MNNKit深度学习SDK,安卓和 iOS 开发者都可以方便地进行调用。

近年来,很多企业都在研发面向移动端的深度学习框架。在国内有小米的 Mace、腾讯的 FeatherCNN(腾讯AI)和 ncnn(腾讯优图)、百度的 Paddle-moblie 等。而阿里也开发了自己的移动端深度学习框架 MNN。

近日,阿里开源了基于 MNN 引擎的项目 MNNKit,面向安卓和 iOS,以 SDK 的方式提供 AI 端侧推理能力。开发者不需要了解算法细节就可以直接使用。

项目地址:https://github.com/alibaba/MNNKit

目前,MNNKit 已经有人脸检测、手势识别、人像分割等,后续可能有更多 API 接入。

MNNKit: 基于 MNN 的深度学习工具

MNN 是基于阿里的 MNN 端上推理引擎所开发的应用解决方案,主要面向安卓和 iOS 系统,帮助将 AI 能力应用在实际的移动端场景中。

MNNKit 架构

MNNKit 提供了一个 SDK 供开发者使用,以下为 SDK 的架构。

阿里开源MNNKit:基于MNN的移动端深度学习SDK,支持安卓和iOS

从图中可以看出,MNNKit 可以分为三层结构,从底向上分别为:

  1. MNN 引擎层,是 MNN (https://github.com/alibaba/MNN) 库在 Android/iOS 上编译好的包的二进制 Release 版本,提供端侧运行环境。

  2. Core 基础层,这主要抽象和封装与 MNN c++接口调用粒度基本一致的上层 API,iOS 通过 OC 接口提供,Android 通过 Java 接口提供(TODO)。这一层同时也为上层 SDK 提供一些公共服务类或结构定义。

  3. 业务 Kit 层,包括了人脸检测、手势识别封装的 API。据项目介绍,之后的业务 Kit 层会不断扩展。

内部原理

因为 MNNKit 主要提供阿里的端侧 AI 能力,因此封装了很多相关应用的 API。调用如下:

阿里开源MNNKit:基于MNN的移动端深度学习SDK,支持安卓和iOS

例如,当用户需要调用 API 的时候,需要首先创建实例,然后将图像、视频或其他结构化数据输入,进行 AI 模型的推理工作。工作完成后释放实例即可。

目前 MNNKit 已支持的 API 有:

  • 人脸检测API

  • 手势识别 API

  • 人像分割 API

以人脸检测为例,检测内容主要分为三大板块:

  • 人脸基本信息

  • 人脸位置的矩形坐标

  • 106 个关键点坐标(区分被遮挡的和未被遮挡的)

  • 置信度

阿里开源MNNKit:基于MNN的移动端深度学习SDK,支持安卓和iOS

106 个关键点的分布(来自官方开源 github)

阿里开源MNNKit:基于MNN的移动端深度学习SDK,支持安卓和iOS

人脸各区域关键点分布对应表

  • 欧拉角度

阿里开源MNNKit:基于MNN的移动端深度学习SDK,支持安卓和iOS

摇头(Yaw)、点头(Pitch)、歪头(Roll)三个角度值

  • 人脸动作(包含 5 个人脸的动作)

  • 眨眼

  • 张嘴

  • 摇头

  • 点头

  • 扬眉

处理过程

我们知道了人脸检测需要检测的数据后,接下来看看处理过程:

阿里开源MNNKit:基于MNN的移动端深度学习SDK,支持安卓和iOS

如图所示,该流程是 iOS 和安卓设备后置摄像头正向拍摄后,在移动端上的整体处理过程。

首先,系统从摄像头获取数据,作为 SDK 的输入。接着,SDK 会进行如下操作:

  1. 在 MNN 引擎执行推理之前,对原始的输入进行预处理,保证输入数据中的人脸为正向

  2. 使用 AI 模型进行推理;

  3. 推理后,产生基于输入图像(预处理之后的)坐标系的关键点结果;。

  4. 把关键点坐标变换到和屏幕渲染坐标系相同的方向,方便渲染。

程应用中,最后的结果关键点要显示在用户屏幕上,前端会使用一个用来渲染的"画布"。画布的坐标系被称为渲染坐标系,

在 SDK 检测的最后一步,我们将关键点变换到和渲染坐标系相同的方向,然后等比例映射关键点坐标到渲染坐标系的坐标即可。映射后可以直接渲染到画布上

代码示例

MNNKit 提供了包括人脸检测、手势识别等方面的示例代码。接下来我们以人脸检测为例,看看怎样可以在安卓或 iOS 中调用 API 进行推理工作。

安卓代码

前文提到,调用 API 需要首先创建一个实例,以下为异步创建 FaceDetector 实例,主线程中回调的代码。

public static void createInstanceAsync (Context context, FaceDetectorCreateConfig createConfig, InstanceCreatedListener<FaceDetector> listener)

在这里,人脸检测API 会进行检测和跟踪两个动作。检测会遭到人脸位置和关键点,而跟踪是在人脸移动时重新定位关键点的位置。

在视频模式下,系统默认每 20 帧检测一次,其余帧只跟踪。图片模式下则每一次调用都检测。

创建实例后,可以将数据输入模型进行推理。MNNKit 现在已支持多种数据格式输入。在视频流检测场景中,我们可以使用摄像头的回调数据作为接口的输入。输入数据的代码如下:

public synchronized FaceDetectionReport[] inference(byte[] data, int width, int height, MNNCVImageFormat format, long detectConfig, int inAngle, int outAngle,  MNNFlipType outputFlip)

使用输入数据为 bitmap 的推理代码如下:

public synchronized FaceDetectionReport[] inference(Bitmap bitmap, long detectConfig, int inAngle, int outAngle, MNNFlipType outputFlip)

当 FaceDetector 实例用完之后,我们需要手动释放实例,否则会产生 native 的内存泄露。

public synchronized void release()

iOS 代码

和安卓代码类似,首先需要创建人脸检测实例:

+ (void)createInstanceAsync:(MNNFaceDetectorCreateConfig*)config Callback:(void(^)(NSError *error, MNNFaceDetector *faceDetector))block CallbackQueue:(dispatch_queue_t)callbackQueue;

默认主线程回调:

+ (void)createInstanceAsync:(MNNFaceDetectorCreateConfig*)config Callback:(void(^)(NSError *error, MNNFaceDetector *faceDetector))block;

PixelBuffer 输入进行推理的代码如下:

- (NSArray<MNNFaceDetectionReport *> *)inference:(CVPixelBufferRef)pixelBuffer Config:(MNNFaceDetectConfig)detectConfig Angle:(float)inAngle OutAngle:(float)outAngle FlipType:(MNNFlipType)flipType error:(NSError *__autoreleasing *)error;

UIImage 输入进行推理的代码如下:

- (NSArray<MNNFaceDetectionReport *> *)inferenceImage:(UIImage*)image Config:(MNNFaceDetectConfig)detectConfig Angle:(float)inAngle OutAngle:(float)outAngle FlipType:(MNNFlipType)flipType error:(NSError *__autoreleasing *)error;

使用通用 buffer 数组输入的代码如下:

- (NSArray<MNNFaceDetectionReport *> *)inference:(unsigned char*)data Width:(float)w Height:(float)h Format:(MNNCVImageFormat)format Config:(MNNFaceDetectConfig)detectConfig Angle:(float)inAngle OutAngle:(float)outAngle FlipType:(MNNFlipType)flipType error:(NSError *__autoreleasing *)error;

实例生命周期结束后,会自动触发相关内存的释放,无需调用方手动释放。

据悉,MNNKit 是 MNN 团队在阿里系应用大规模业务实践后的成熟解决方案,历经双十一等项目考验,在不依赖于后端的情况下进行高性能推理,使用起来稳定方便。

开源 技术 趋势
上一篇:为什么你觉得Matplotlib用起来困难?因为你还没看过这个思维导图 下一篇:我花了两年,从不懂Python变成了AI工程师
评论
取消
暂无评论,快去成为第一个评论的人吧

更多资讯推荐

Google 开源最新 NLP 模型,能处理整本《罪与罚》

Transformer 可谓是近年 NLP 领域关注度颇高的模型之一。近日,Google 又推出了 Transformer 的“升级版”——Reformer。

Rachel ·  2020-01-18 14:50:13
AI芯片2019年的六大关键词和2020年的四大趋势

AI芯片市场的竞争变得更加激烈,但大都面临落地难题。回顾2019年的AI芯片发展,6个关键词贯穿其中。展望2020年的AI芯片市场,4大趋势不容忽视。

包永刚 ·  2020-01-06 09:40:22
2020年最值得关注的四种企业AR趋势 精选

尽管 AR 技术在消费者领域的表现不尽如人意,但这并没有阻挡企业界对它的喜爱。在经历了几年的缓慢增长之后,企业增强现实(AR)似乎有望在 2020 年实现令人印象深刻的飞跃。

肖漫 ·  2019-12-29 23:55:57
微软年度研究大盘点:ML突破将到来,人机交互更真实,惜别沈向洋 精选

随着岁末钟声的临近,微软研究院回顾了这一年来在人工智能领域中的工作。

十三 ·  2019-12-26 09:52:47
有这5款开源软件,语音转文字很简单!

语音文字转换(STT)系统,一种能够将语音单词转换成文本的方法,用途十分广泛,比如我们经常在用的微信聊天中语音转文字功能。

猿妹 ·  2019-12-13 09:48:48
谷歌15个人工智能开源免费项目!开发者:懂了 精选

今天说的是来自科技“大厂”Google发布的一些涉及到机器学习、深度学习、神经网络等优质的人工智能开源项目,精心挑选了一部分推荐给大家学习。下面就来看一看。

钛灵Tiorb ·  2019-11-22 23:52:15
\"狗屁不通文章生成器\"登顶GitHub热榜,一键生成万字形式主义大作 精选

GitHub上,这个富有灵魂的项目名吸引了众人的目光。项目诞生一周,便冲上了趋势榜榜首。

栗子 鱼羊 ·  2019-11-13 14:15:00
开源图神经网络框架DGL升级:GCMC训练时间从1天缩到1小时

又一个AI框架迎来升级。这次,是纽约大学、亚马逊联手推出图神经网络框架DGL。

乾明 ·  2019-10-16 15:40:27
Copyright©2005-2020 51CTO.COM 版权所有 未经许可 请勿转载