用科技抗击疫情,人工智能发挥着什么作用?

作者: 佚名 2020-02-03 14:49:19

随着产业需求的变化,5G、AI以及大数据等新技术风口密集爆发,为传统行业赋能全新价值。在近期爆发的疫情当中,为了实现更好的管控防治效果,不少企业纷纷应用诸多技术手段来抗击疫情。对比2003年肆虐的非典疫情,此次的疫情在症状上潜伏期更长,传染性更强,因此在防治方面无疑会面临更大的困难。

监控人员流向、潜在传染人群、切断传染源,在这场“战疫”中,这些都是亟待解决的问题。虽然疫情的传播性更强,但相比2003年,当下也有了更多的新颖技术来进行应对。在这场疫情抗击中,背后的技术手段正在发挥重要作用。

在传染病疫情的防治上,确定传染源是最为重要的一点。相比明显的症状,此次疫情较长的潜伏期和春运流动无形中扩大了传染范围,因此加剧了疫情状况。对于这一方面,大数据就发挥了作用。此前武汉市市长周先旺表示已有500万人员出于春节节假以及疫情等因素流出武汉,而这一庞大的人员流动毫无疑问会增强潜在的传染风险。

对于这一点,百度地图慧眼迁徙大数据通过数据定向、分析等途径确定了500万人员流出的方向。在1月1日至1月26日期间,武汉人员迁出地前十排行多为孝感、黄冈等省内市区。通过百度迁徙,用户可以对全国乃至省市每天迁入迁出流动进行分析。在直观的可视图下,地方可以对疫情控制进行更加精准和严格的控制。

u=3792655676,556716955&fm=26&gp=0

例如在武汉迁出地上,不只是疫情爆发期间,在23日封城之前,我们也不难看出孝感和黄冈两者迁出比例都排名前列,传染风险性更高。从确诊人数来看也确实如此,截至2020年1月31日24时,湖北省内确诊人数分别为武汉(3215例)、黄冈(726例)以及孝感(628例)。在采取封锁政策之后,除开武汉,黄冈和孝感等高迁出目的地也应当给予重视,避免出现“灯下黑”的情况。

除开宏观的人员流向,大数据还能够应用于微观用户的运动轨迹。对于已确定感染人群来说,通过基于移动终端的轨迹,我们可以通过汇集的大数据来勾画关系图谱,进一步追踪接触者以进行隔离管理。

这两种应用场景并不相同,但在技术手段上还是依靠地理位置授权等数据。以百度为例,除开百度地图应用的用户位置感知,当用户打开百度系等APP的时候,基于LBS我们可以同样知悉用户地理位置。除此之外,大数据也将会对用户的支付、车票行程、住宿等信息进行整合分析。通过AI对于密集的用户信息进行分析,我们将可以通过多个维度来筛出潜在传染用户,并且迅速采取措施斩断彼此的联系。

5G在去年迎来了风口,而应用场景在此次疫情中也逐渐落地。由于拥有更大的带宽、更低的时延优点,5G在数据传输上具有明显优势。在疫情爆发的时间段内,5G网络的布设不仅可以让诊断更加高效,同时还能够有效减轻交叉感染的机会,从而增强疫情防控效果。无论是各省市医院还是火神山、雷神山医院,5G网络加设都在其中起到了重要作用。

通过5G网络,对于医院人流量情况相应部分可以实现实时高清视频监控,同时医生还能够开展远程视频诊疗、远程视频会议,远程手术,从而减少直接接触,提高防控能力。不只是传播维度的拓宽,5G网络的高速率还保证了通讯的畅通,营造出更为畅通的信息环境。

除开直接的信息通讯,5G网络还带来了“业务上云”的可能。例如在病患信息采集上,可以直接通过5G网络实时反馈到医生面前,减少直接接触的机会。此外,病患的病历还可以实现云上共享,打通彼此信息,从而便捷病情之间的诊断交流。

大数据的处理离不开人工智能,而后者在疫情中所能发挥的作用也越来越多。此次疫情不仅本身具有较强的传染性,在时间点上也碰上了流感爆发以及春运流动的时间点,因此病情人数不断上升。也正因如此,在大规模传染之后,现有的医疗资源势必难以满足抬升的病患用户。

为了提高效率,此前阿里巴巴达摩院推出了“智能疫情机器人”,通过语音识别、自然语义理解等人工智能技术,机器人可以针对疫情问题、就医注意、防护措施进行回答。对于正常用户、轻症用户来说,人工智能可以起到一定的答疑作用,避免医疗资源紧缺以及交叉感染的风险。

人工智能还被应用于疫苗科研研发。通过AI技术的深度学习处理,它能够便于科研人员进行数据分析、快速筛选文献以及相应的测试工作。不仅如此,AI还可以应用于建立模型以观察疫情传播。早在之前,国内基于AI和大数据的流感实时预测模型便登上了《柳叶刀》的子刊,为传染病预测提供了更加精准的逻辑框架。

该模型由平安科技、平安智慧城市、重庆市疾病预防控制中心、陆军军医大学和清华大学联合完成,用以预测重庆市流感活动。通过对卫生系统内部流感监测数据、天气数据、互联网舆情等数据的监测分析,相关部门可以更好地把握疾病发生周期、预计活动,从而合理分配卫生医疗资源、引导居民进行预防。

利用数据分析来确定疾病威胁等级,从而预测疫情爆发,在海外也已经有了相应健康公共风险评估机构。对于这一次疫情,加拿大BlueDot表示在去年12月底便已经发现了新型冠状病毒的存在,并已向客户进行了通报。应对疫情来袭,疫苗和疗法是重中之重,但在往后的风险传播中,人工智能势必将会被更多地应用于预测疫情爆发。

疫情 人工智能 5G
上一篇:人工智能已辅助分析242万份病历 下一篇:NLPer复工了!先看看这份2019机器学习与NLP年度盘点吧
评论
取消
暂无评论,快去成为第一个评论的人吧

更多资讯推荐

加速算力的迭代优化 AI芯片需破解落地难题

AI芯片怎样支撑多姿多彩的人工智能应用落地?评测标准进展如何?今年的亮点、看点又在哪?科技日报记者采访了相关专家。

唐 芳 ·  19h前
机器学习第一步,这是一篇手把手的随机森林入门实战

到了 2020 年,我们已经能找到很多好玩的机器学习教程。本文则从最流行的随机森林出发,手把手教你构建一个模型,它的完整流程到底是什么样的。

机器之心 ·  21h前
战疫下的无人机:监控、空中防控、硬核劝返

在这次疫情当中,无人机的“硬核”加入,让它化身为空中“战士”,它可能是监督大军、空中防控、甚至是防疫消毒的大功臣。

黄当当 ·  21h前
互联网巨头集体封杀,AI换脸能走多远?

多少人还记得去年在微博爆火的视频:有人将《射雕英雄传》中朱茵扮演的“黄蓉”换成了杨幂,换脸后的“黄蓉”毫无痕迹,并且轮廓清晰、表情自然,完全看不出是经过换脸的。

读芯术 ·  23h前
阿里达摩院再造AI抗疫技术:20秒判读CT影像,识别准确率达96%

阿里方面最新消息,达摩院联合阿里云针对新冠肺炎临床诊断研发了一套全新AI诊断技术。

允中 ·  1天前
人工智能如何赋能经济高质量发展

继第一、第二、第三次工业革命之后,人工智能可能引发人类的第四次工业革命,并且其对人类经济社会文化的影响深度远远超过前三次革命。如何看待人工智能对我经济社会发展的影响?如何形成人工智能产业新生态?记者专访了中国科学技术发展战略研究院研究员李修全。

佚名 ·  1天前
欺诈不可怕,机器学习算法分分钟拿下! 精选

根据一项调查,采用基于AI的解决方案的防欺诈专家中有80%认为AI对打击欺诈者有效。但是,仍然存在的问题是弄清楚哪种机器学习算法可以有效地检测未知的欺诈模式。监督学习和无监督学习算法哪一个更有效?

读芯术 ·  2天前
助力抗疫,人工智能和大数据将全面爆发? 精选

新型冠状病毒肺炎疫情的爆发和传播,牵动着全国人民的心。社会各界纷纷投入到这场没有硝烟的疫情阻击战中。

中国经营报 ·  3天前
Copyright©2005-2020 51CTO.COM 版权所有 未经许可 请勿转载