人类终于创造了惰性人工智能……

作者: 读芯术 2020-02-06 13:06:52

许多文章解释了强化学习(RL)的概念,但鲜有文章解释如何切实地设计实现现实世界中的强化学习。

小芯这次想分享人工智能范式转变课程,讨论设计权衡问题,并深入研究技术细节。

那么,我们开始吧!

首先,喝酒?

想象一下你身处聚会,有点微醺或酩酊大醉,自愿参加一个饮酒游戏,想要打动一个(或多个)颇具魅力的泛泛之交。

有人蒙住你的眼睛,给你一杯或一瓶啤酒,喊道:“倒酒!”

你会怎么做?

可能会有以下反应:该死,我应该怎么做?怎样能赢!要是输了怎么办!?

游戏规则如下:在10秒内把啤酒灌满,尽可能接近玻璃杯上的标记。可以把啤酒倒进倒出。

RL(强化学习)解决方案面临着类似的任务,高大上且有意义,欢迎了解。

现实世界中的啤酒问题

环保共享单车业务存在一个大问题。一天中,每个单车停放处(杯)的共享单车(啤酒)数量过多或不足。

人类终于创造了惰性人工智能……

纽约市单车停放处的单车过剩(左图)和不足(右图)

对于骑自行车的人来说,这十分不便,并且要花费数百万美元来管理运营,也不划算。不久前,笔者在纽约大学的团队任务是提供人工智能解决方案,将人工干预降到最小,帮助管理自行车库存。

目标:每天将各个单车停放处的数量保持在1至50之间(想想杯子上的标记)。这在共享经济中被称为“再平衡问题”。

限制条件:由于运营限制,团队每天每小时只能移动1、3或10辆单车(可以倒入或倒出的啤酒量)。当然,他们可以选择什么都不做。团队移动的单车越多,价格越昂贵。

惰性RL(强化学习)解决方案

团队决定使用RL (强化学习),它克服了传统方法的许多局限(例如基于规则和预测)。

如果想了解RL(强化学习)以及一些关键概念,乔纳森·辉(JonathanHui)撰写了一篇很棒的介绍,托马斯·西蒙尼尼(ThomasSimonini )详细解释了解决方案中应用的RL算法Q-Learning。

事实证明,人类创建了极具惰性的人工智能。当单车存量超过60辆时,它通常会选择不执行任何操作或执行最少操作(移动1或3辆自行车)。似乎有违常理,但这是非常明智的。

根据直觉,可能会移动尽可能多的单车以将其保持在50辆以下,尤其是在停放处停满时。但是,RL(强化学习)识别出移动成本(移动的单车越多,成本越高)以及在某些情况下成功的机会。考虑到所剩时间,根本不可能实现目标。它知道最好的选择是“放弃”。因此,放弃比继续尝试要付出更少的代价!

所以呢?当人工智能做出非常规决策时,类似于谷歌Alpha Go研发的著名Move 37 and 78 ,它们会挑战人类的偏见,帮助打破知识的魔咒,并将人类推向未知的道路。

创造人工智能既是一种发明,也是一种探索人类内心活动的旅程。——DeepMind创始人德米斯·哈萨比斯 (Demis Hassabis)在《经济学人》杂志《2020年的世界》(The World in 2020)一文中所言。

但是,请保持谨慎。人类价值体系无可替代,因此人类不会一落千丈或迷失自我。

哲学知识已经足够了,现在现实一点吧

RL如何管理单车停放处?

下图显示了在有无RL的情况下,一天当中单车的停放量。

  • 蓝色线是无RL情况下的单车停放趋势。
  • 黄色线是最初RL情况下移出单车的趋势,很昂贵。
  • 绿色线是训练有素的RL,它仅移出足以满足目标的单车,更能了解成本。 
人类终于创造了惰性人工智能……

作者分析

RL如何决定该做什么?

以下是经过98,000次训练后RL解决方案Q表的快照。它解释了RL如何根据停放处(垂直数据)上的自行车数量来决定做什么(水平数据)。RL不太可能选择用红色进行操作。看看底部的红色区域。

人类终于创造了惰性人工智能……

作者分析

RL能有多智能?以下图表介绍了RL对停放处的管理情况。通过深入学习,RL可以将整体成功率逐步提高到98%,令人印象深刻。

人类终于创造了惰性人工智能……

作者分析

希望大家喜欢这篇文章,并由衷地期待RL在现实世界中展示出的潜力。

人工智能 自行车 啤酒
上一篇:抗疫阻击战 人工智能有「技」可施吗? 下一篇:5G消毒机器人支援武汉 可有效避免人员感染
评论
取消
暂无评论,快去成为第一个评论的人吧

更多资讯推荐

四种使用物联网和人工智能加速获取价值的有效方法

最近,话题转向企业如何才能更快,更有效地获取和利用物联网计划的见解。物联网和人工智能的结合为企业实现这一预期成果提供了途径。实际上,这两种技术是相辅相成的,应该紧密相连。

佚名 ·  1天前
AIoT:漫谈

什么是AIoT,它能做什么?这些就是我们今天这篇文章要解决的问题。

iothome ·  1天前
干货!从0到1教你打造一个令人上瘾的聊天机器人?

几千年来,我们一直都是直接通过对话来解决问题的。聊天机器人(Chatbots)的出现实际上是回归到了最简单的岁月。

火火酱 ·  1天前
治愈大脑,人机共生,马斯克为“脑机接口”辩护

随着今年年初特斯拉中国工厂正式开始交付特斯拉 model3 型号电动汽车,特斯拉的股值不断飙升,与此同时特斯拉和马斯克也在新闻媒体上赚足了眼球。

学术君 ·  1天前
英伟达将展示6款机器人:真人大小,力举千斤……

除了显卡之外,老黄近几年也越来越关注AI与机器人,在下月举行的GTC 2020上,英伟达宣布将至少展示6款机器人,它们高矮胖瘦各不同,具备不同的功能。

佚名 ·  2天前
戴口罩难以刷脸支付 刷手行不行?

人工智能技术日益深入生活的同时,公众的隐私担忧也越来越甚。人脸作为生物识别特征数据的一种,与其他识别方式相比具有更容易暴露、难以更改的特性,公众对相关的收集使用活动就更为敏感。那么,有没有其他支付方式?

佚名 ·  2天前
从TensorFlow到Theano:横向对比七大深度学习框架

最近,来自数据科学公司 Silicon Valley Data Science 的数据工程师 Matt Rubashkin(UC Berkeley 博士)为我们带来了深度学习 7 种流行框架的深度横向对比,希望本文能对你带来帮助。

AI小师弟 ·  2天前
AI驱动的网络安全团队致力于人类强化

在很多其他行业,流程自动化和AI预示着工作机会的减少,但与之不同的是,威胁情报的未来是强化人类,而不是取代人类。在这方面,我们的研究发现以下三个主要原因。

邹铮 ·  2天前
Copyright©2005-2020 51CTO.COM 版权所有 未经许可 请勿转载