DeepMind发布神经网络、强化学习库,网友:推动JAX发展

作者: 十三 2020-02-21 15:33:44

本文经AI新媒体量子位(公众号ID:QbitAI)授权转载,转载请联系出处。

 DeepMind今日发布了Haiku和RLax两个库,都是基于JAX。

JAX由谷歌提出,是TensorFlow的简化库。结合了针对线性代数的编译器XLA,和自动区分本地 Python 和 Numpy 代码的库Autograd,在高性能的机器学习研究中使用。

而此次发布的两个库,分别针对神经网络和强化学习,大幅简化了JAX的使用。

Haiku是基于JAX的神经网络库,允许用户使用熟悉的面向对象程序设计模型,可完全访问 JAX 的纯函数变换。

RLax是JAX顶层的库,它提供了用于实现增强学习代理的有用构件。

有意思的是,Reddit网友惊奇的发现Haiku这个库的名字,竟然不以“ax”结尾。

DeepMind发布神经网络、强化学习库,网友:推动JAX发展

当然,也有网友对这两个库表示了肯定:

毫无疑问,对JAX起到了推动作用。

DeepMind发布神经网络、强化学习库,网友:推动JAX发展

那么,我们就来看下Haiku和RLex的庐山真面目吧。

Haiku

Haiku是JAX的神经网络库,它允许用户使用熟悉的面向对象编程模型,同时允许完全访问JAX的纯函数转换。

它提供了两个核心工具:模块抽象hk.Module,和一个简单的函数转换hk.transform。

hk.Module是Python对象,包含对其自身参数、其他模块和对用户输入应用函数方法的引用。

hk.transform允许完全访问JAX的纯函数转换。

其实,在JAX中有许多神经网络库,那么Haiku有什么特别之处呢?有5点。

1、Haiku已经由DeepMind的研究人员进行了大规模测试

DeepMind相对容易地在Haiku和JAX中复制了许多实验。其中包括图像和语言处理的大规模结果、生成模型和强化学习。

2、Haiku是一个库,而不是一个框架

它的设计是为了简化一些具体的事情,包括管理模型参数和其他模型状态。可以与其他库一起编写,并与JAX的其他部分一起工作。

3、Haiku并不是另起炉灶

它建立在Sonnet的编程模型和API之上,Sonnet是DeepMind几乎普遍采用的神经网络库。它保留了Sonnet用于状态管理的基于模块的编程模型,同时保留了对JAX函数转换的访问。

4、过渡到Haiku是比较容易的

通过精心的设计,从TensorFlow和Sonnet,过渡到JAX和Haiku是比较容易的。除了新的函数(如hk.transform),Haiku的目的是Sonnet 2的API。

5、Haiku简化了JAX

它提供了一个处理随机数的简单模型。在转换后的函数中,hk.next_rng_key()返回一个唯一的rng键。

那么,该如何安装Haiku呢?

Haiku是用纯Python编写的,但是通过JAX依赖于c++代码。

首先,按照下方链接中的说明,安装带有相关加速器支持的JAX。

https://github.com/google/jax#installation

然后,只需要一句简单的pip命令就可以完成安装。

  1. $ pip install git+https://github.com/deepmind/haiku 

接下来,是一个神经网络和损失函数的例子。

  1. import haiku as hk 
  2.  
  3. import jax.numpy as jnp 
  4.  
  5. def softmax_cross_entropy(logits, labels): 
  6.  
  7.   one_hot = hk.one_hot(labels, logits.shape[-1]) 
  8.  
  9.   return -jnp.sum(jax.nn.log_softmax(logits) * one_hot, axis=-1
  10.  
  11. def loss_fn(images, labels): 
  12.  
  13.   model = hk.Sequential([ 
  14.  
  15.       hk.Linear(1000), 
  16.  
  17.       jax.nn.relu, 
  18.  
  19.       hk.Linear(100), 
  20.  
  21.       jax.nn.relu, 
  22.  
  23.       hk.Linear(10), 
  24.  
  25.   ]) 
  26.  
  27.   logits = model(images) 
  28.  
  29.   return jnp.mean(softmax_cross_entropy(logits, labels)) 
  30.  
  31. loss_obj = hk.transform(loss_fn) 

RLax

RLax是JAX顶层的库,它提供了用于实现增强学习代理的有用构件。

它所提供的操作和函数不是完整的算法,而是强化学习特定数学操作的实现。

RLax的安装也非常简单,一个pip命令就可以搞定。

  1. pip install git+git://github.com/deepmind/rlax.git 

使用JAX的jax.jit函数,所有的RLax代码可以不同的硬件上编译。

RLax需要注意的是它的命名规则。

许多函数在连续的时间步长中考虑策略、操作、奖励和值,以便计算它们的输出。在这种情况下,后缀_t和tm1通常是为了说明每个输入是在哪个步骤上生成的,例如:

q_tm1:转换的源状态中的操作值。

a_tm1:在源状态下选择的操作。

r_t:在目标状态下收集的结果奖励。

q_t:目标状态下的操作值。

Haiku和RLax都已在GitHub上开源,有兴趣的读者可从“传送门”的链接访问。

传送门

Haiku:

https://github.com/deepmind/haiku

RLax:

https://github.com/deepmind/rlax

人工智能 机器学习 技术
上一篇:谷歌透露:正在内部尝试用AI开发计算机芯片 下一篇:意料之外 情理之中:解读Gartner 2020年数据科学和机器学习平台魔力象限
评论
取消
暂无评论,快去成为第一个评论的人吧

更多资讯推荐

5G+无人机的优势

无人机作为空中人工智能领域的“智慧眼”,在安全可靠的治安巡检、精准无误的地形测绘、随时随地的航拍取景、移动的智能识别等领域有着具体应用,都离不开移动通信技术的支撑!基于5G通信技术的发展,无人机也迎来新飞跃。

佚名 ·  20h前
关于AI在游戏领域的5个预测,你不一定都知道

随着计算机视觉技术的迅猛发展,机器学习在视频游戏行业中得到了广泛地应用,尤其是在虚拟现实领域。

Yu ·  20h前
碳基生物惨遭淘汰!AI在纵横字谜中首次获得胜利

「美国纵横字谜锦标赛」刚刚落下帷幕,其中由计算机科学家与伯克利自然语言小组共同合作的人工智能Dr. Fill首次在纵横字谜中战胜人类并获得胜利。尽管如此,该领域人工智能的发展面仍临着诸多挑战,人类依然被认为在解决现实世界问题方更佳现更佳。

佚名 ·  23h前
人工智能聊天机器人如何彻底改变保险行业

本文讲述了人工智能驱动的聊天机器人将如何分担保险公司工作人员的一些工作。

Faheem Shakeel ·  1天前
AI系统安全测试的自动化工具

Counterfit 是微软开发的一个开源工具,用于对企业或组织的人工智能系统进行自动化的安全测试。

Travis ·  1天前
机器学习技术使显微镜变得比以往更好

机器学习帮助一些最好的显微镜看得更清楚,工作得更快,并处理更多的数据。

cnBeta ·  1天前
连视频聊天都能换脸造假?深扒可怕的AI换脸软件

时至今日,用AI换脸制造假视频,已经不是什么新闻。视频AI换脸大大降低了制造假视频的难度,网络上甚至出现了大量使用女明星换脸的色情视频,这不得不让人忧心AI换脸在违法犯罪领域的潜力。

Aimo ·  1天前
关于AI在游戏领域的5个预测,你不一定都知道

未来,人工智能的发展将如何帮助开发者创造更好的游戏呢?以下是对人工智能在游戏产业中的5个预测。

Yu ·  1天前
Copyright©2005-2021 51CTO.COM 版权所有 未经许可 请勿转载