如何用10行代码完成目标检测

作者: 机器学习与数据分析 2020-02-28 15:33:12

导语

人工智能的一个重要领域是计算机视觉。计算机视觉是计算机和软件系统能够识别和理解图像和场景的科学。计算机视觉还包括图像识别、目标检测、图像生成、图像超分辨率等多个方面。由于大量的实际用例,对象检测可能是计算机视觉最深刻的方面。

如何用10行代码完成目标检测

目标检测是指计算机和软件系统在图像/场景中定位目标并识别每个目标的能力。目标检测已经广泛应用于人脸检测、车辆检测、行人计数、网络图像、安全系统和无人驾驶汽车。在许多领域的实践中,对象检测也有许多方法可以使用。像其他的计算机技术一样,对象检测的广泛的创造性和惊人的用途肯定会来自计算机程序员和软件开发人员的努力。

这次要介绍的一个叫做ImageAI的项目,它一个python库,让程序员和软件开发人员只需几行代码就可以轻松地将最先进的计算机视觉技术集成到他们现有的和新的应用程序中。

ImageAI安装工作

要使用ImageAI执行对象检测,您需要做的就是:

  1. 在计算机系统上安装Python
  2. 安装ImageAI及其依赖项
  3. 下载对象检测模型文件
  4. 运行示例代码(只有10行)

那么我们现在开始:

  • 从官方Python语言网站下载并安装Python 3。
  • 通过pip安装:TensorFlow,OpenCV, Keras, ImageAI
  1. pip3 install tensorflow 
  2. pip3 install opencv-python 
  3. pip3 install keras 
  4. pip3 install imageai --upgrade 

3)通过此文章中的链接下载用于对象检测的RetinaNet模型文件:

https://towardsdatascience.com/object-detection-with-10-lines-of-code-d6cb4d86f606

运行程序

太好了。我们现在已经安装了依赖项,可以编写第一个对象检测代码了。创建一个Python文件并给它起一个名字(例如,FirstDetection.py),然后将下面的代码写进去。将要检测的RetinaNet模型文件图像复制到包含python文件的文件夹中。

  1. from imageai.Detection import ObjectDetection  
  2. import os 
  3.  execution_path =os.getcwd()  
  4. detector = ObjectDetection()  
  5. detector.setModelTypeAsRetinaNet()  
  6. detector.setModelPath( os.path.join(execution_path , "resnet50_coco_best_v2.0.1.h5"))  
  7. detector.loadModel()  
  8. detections = detector.detectObjectsFromImage( input_image=os.path.join(execution_path , "image.jpg"), output_image_path=os.path.join(execution_path , "imagenew.jpg")) 
  9.  for eachObject in detections:  
  10. print(eachObject["name"] , " : " ,  
  11. eachObject["percentage_probability"] ) 

需要注意的是,如果你在运行遇到这个错误:

  1. ValueError: Unable to import backend : theano python mymodel.py 

那么你可以尝试:

  1. import osos.environ['KERAS_BACKEND'] = 'tensorflow'from  
  2. imageai.Detection import ObjectDetection 

然后运行代码并等待结果打印在控制台中。一旦结果打印到控制台中,转到您的FirstDetection.py所在的文件夹,您将发现保存了一个新图像。看看下面的两个图像样本和检测后保存的新图像。

检测前:

如何用10行代码完成目标检测

检测后:

如何用10行代码完成目标检测

数据结果

我们可以看到程序会打印输出一些各个物体的概率数据:

  • person : 55.8402955532074
  • person : 53.21805477142334
  • person : 69.25139427185059
  • person : 76.41745209693909
  • bicycle : 80.30363917350769
  • person : 83.58567953109741
  • person : 89.06581997871399
  • truck : 63.10953497886658
  • person : 69.82483863830566
  • person : 77.11606621742249
  • bus : 98.00949096679688
  • truck : 84.02870297431946
  • car : 71.98476791381836

可以看出来程序可以对图片中的以下目标进行检测:

人,自行车,卡车,汽车,公交车。

大家可以直接将自己希望检测的照片放到程序里面运行看看效果。

原理解释

现在让我们解释一下10行代码是如何工作的。

  1. from imageai.Detection import ObjectDetectionimport osexecution_path  
  2. = os.getcwd() 

在上面的3行代码中,我们在第一行导入了ImageAI对象检测类,在第二行导入了python os类,并定义了一个变量来保存python文件、RetinaNet模型文件和图像所在的文件夹的路径。

  1. detector = ObjectDetection()detector.setModelTypeAsRetinaNet()detector.setModelP 
  2. ath( os.path.join(execution_path , "resnet50_coco_best_v2.0.1.h5"))detector.loadModel()detections =  
  3. detector.detectObjectsFromImage(input_image=os.path.join(execution_pa 
  4. th , "image.jpg"), output_image_path=os.path.join(execution_path ,  
  5. "imagenew.jpg")) 

在上面的代码中,我们定义对象检测类在第一线,将模型类型设置为RetinaNet在第二行,设置模型路径的路径在第三行RetinaNet模型,该模型加载到对象检测类在第四行,然后我们称为检测函数,解析输入图像的路径和输出图像路径在第五行。

  1. for eachObject in detections:    print(eachObject["name"] , " : "      
  2. , eachObject["percentage_probability"] ) 

在上面的代码中,我们在第一行迭代了detector.detectObjectsFromImage函数返回的所有结果,然后在第二行打印出图像中检测到的每个对象的模型名称和百分比概率。

代码 人工智能 检测
上一篇:国产深度学习框架MegEngine,三月底即将开源 下一篇:围观各大企业如何活用人工智能,并运用实践?
评论
取消
暂无评论,快去成为第一个评论的人吧

更多资讯推荐

AI人工智能在2020年的7个发展趋势

随着对其他AI应用程序需求的增长,企业将需要投资有助于其加快数据科学流程的技术。然而:实施和优化机器学习模型只是数据科学挑战的一部分。

CDA数据分析师 ·  1天前
物联网和机器人如何协同工作

很显然,机器人和物联网是两个完全不同的领域。但是,毫无疑问,它们正在协同工作,因为彼此都在帮助对方发展和创新。

iothome ·  2天前
腾讯和清华发表新基建领域最新成果:数据中心电池设备AI诊断服务

近日,腾讯数据中心与清华大学自动化系智网中心团队的贾庆山老师合作论文被第21届IFAC国际自动控制世界大会录取。

佚名 ·  2天前
哈工大造出柔性机器人,人造肌肉能和象鼻一样灵活了!

近日,国际著名期刊 Soft Robotics 刊登了哈尔滨工业大学冷劲松教授团队与美国马里兰大学 Norman M. Wereley 教授团队的共同研究成果,题为 Novel Bending and Helical Extensile/Contractile Pneumatic Artificial Muscles Inspired by Elephant Trunk(受象鼻启发的新型弯曲螺旋可伸展/收缩气动人工肌肉)。

付静 ·  2天前
机器人警察正在将虚幻变成现实

配备了人工智能、计算机视觉、物联网和其他先进技术的机器人警察可以帮助维护法律和秩序,并确保社区安全。

iothome ·  2天前
宫崎骏动画里的新垣结衣见过没?这个开源动漫生成器让你的照片秒变手绘日漫

随手拍张照片,顺势转换为宫崎骏、新海诚等日漫大师的手绘风格作品,这个专门生成动漫图像的 GAN,实测很好用。

肖清、思 ·  3天前
“阿凡达”式脑-脑接口性能提升 2-3 个数量级

脑-脑接口这一概念,看过科幻电影《阿凡达》的人可能有点印象。在电影中,地球上的人可以通过脑对脑的直接信息传递,远程控制潘多拉星上经基因改造的蓝色类人生物 Na'vi 族。

付静 ·  3天前
从零开始构建简单人工神经网络:1个隐藏层

我们在本文中将构建一个有1个输入层、1个隐藏层和1个输出层的神经网络。我们会看到,我们构建的神经网络能够找到非线性边界。

布加迪 ·  3天前
Copyright©2005-2020 51CTO.COM 版权所有 未经许可 请勿转载