GitHub标星6000+!Python带你实践机器学习圣经PRML

作者: 白峰 2020-03-03 15:41:50

GitHub标星6000+!Python带你实践机器学习圣经PRML

将 Bishop 大神的 PRML 称为机器学习圣经一点也不为过,该书系统地介绍了模式识别和机器学习领域内详细的概念与基础。书中有对概率论基础知识的介绍,也有高阶的线性代数和多元微积分的内容,适合高校的研究生以及人工智能相关的从业人员学习。

知乎上关于这个关于“PRML为何是机器学习的经典书籍中的经典?”的高赞回答或许会给大家一些启发:

GitHub标星6000+!Python带你实践机器学习圣经PRML

Luau Lawrence的回答:

https://www.zhihu.com/question/35992297/answer/67009652

PRML 对初学者确实有一定难度,如果觉得吃力可以先读一下知乎上推荐的科普性读物,掌握了机器学习的基础概念之后再进行后续的学习。

知乎讨论地址:

https://www.zhihu.com/question/35992297

首先我们来看一下 PRML 的主要内容:

第一章是引子,用曲线拟合让读者对机器学习有个大概理解。

第二章主要是介绍了一下基础的统计方面的知识,包括期望方差的计算、高斯分布的参数估计与理解、高斯分布的性质等。

第三章和第四章主要在讲最基础的线性模型,并且展示了如何将其应用在分类和回归的场景下,贝叶斯方法是整本书的核心。

第五章介绍了神经网络,在线性模型的基础上引入了多层感知机模型,即常说的 BP 网络。

第六章讲的是核方法,核是两个样本的内积,也可以理解为某个希尔伯特空间中由内积定义的“距离”。主要讲了线性模型转成核表达的方式、核的构建以及高斯过程。

第七章是向量机,向量机讲的是贝叶斯模型如何通过先验找到一个稀疏的模型。

第八章是讲的图模型,对变量的独立性、隐变量和参数的区别(这个会在变分贝叶斯中体现)做了很好的阐释。

第九章讲了混合模型和 EM 算法,涉及了隐变量的概念和 EM 算法等。

第十章讲的是变分推断,解决了基于现在的模型的分布假设,推断参数难的问题。

第十一章讲采样方法,介绍了不同采样方法的优缺点,并重点讲了MCMC采样。

第十二章讲主成分分析,是考察多个变量间相关性一种多元统计方法,研究如何通过少数几个主成分来揭示多个变量间的内部结构。

第十三章讲的是序列数据,序列数据的特点及马尔可夫假设等。

第十四章讲的是 Ensemble,包括适应性的 boosting 最著名的 AdaBoost,以及一些其他的融合方法。

看这些理论知识是非常枯燥的,很多初学者感觉学起来非常吃力,甚至半途放弃,如果你也有这些困扰,那么下面提到的这个 GitHub 项目也许可以帮你走出困境。

GitHub标星6000+!Python带你实践机器学习圣经PRML

在 notebooks 文件夹下实现了聚类方法、特征抽取、线性模型、核方法、马尔科夫模型、概率分布模型、采样方法和神经网络方法等内容,你可以将目录切换到

notebooks 下直接打开对应的 ipynb 文件进行练习。

GitHub标星6000+!Python带你实践机器学习圣经PRML

该 GitHub 项目所需要的编程语言为 Python 3,其它科学计算库还需要 NumPy 、SciPy、 Matplotlib、Scikit-learn 等,如果你是 Python 初学者,那么我们强力推荐你安装 Annaconda,它集成了所有需要的计算库,并且可以在 jupyter notebook 交互式的查看执行的结果。

GitHub标星6000+!Python带你实践机器学习圣经PRML

这么好的资源赶紧学起来吧!

GitHub链接:

https://github.com/ctgk/PRML

机器学习 人工智能 计算机
上一篇:头顶上的“机器人”来了!创业者的智慧:研发智能安全帽 可实时定位、自动报警 下一篇:三部委:加快AI领域研究生培养,抢占世界科技前沿
评论
取消
暂无评论,快去成为第一个评论的人吧

更多资讯推荐

可再生能源与机器学习“双重加持”,谷歌成功实现风力预测

从传统角度看,电力电场的发电能力普遍较弱,因为我们至今很难预测无形无相的风,会在新一天中表现出怎样的活动趋势。

佚名 ·  1天前
明确解释:机器学习与统计建模有何不同

这篇文章提出了一个非常重要的区别,我们应该将其理解为数据科学领域的活跃部分。 上面的维恩图最初是由SAS Institute发布的,但是它们的图显示统计和机器学习之间没有重叠,据我所知,这是一个疏忽。

闻数起舞 ·  1天前
云计算人工智能的发展显著改善IT安全性

随着数据泄露越来越普遍,IT安全性变得越来越重要。幸运的是,人工智能工具和云计算资源正在提供新的解决方案。

Harris ·  1天前
人工智能在半导体市场的发展潜力及其意义

IHSMarkit在本周发布的一项人工智能应用调查中预测,到2025年,人工智能应用将从2019年的428亿美元激增至1289亿美元。

佚名 ·  1天前
沙发变身遥控器,涂鸦里藏PCB,MIT技术宅的智能家居竟然是这样

把墙壁、沙发、柱子或者家中任何东西,埋进电路和传感器,整个房子也就被改造成了大型PCB电路板,每一条线路、每一个节点、每一个控制装置,都嵌入到房间自身的装修中,像个变色龙一样,你再也看不到突兀的开关了。

鱼羊 郭一璞 ·  1天前
马云:机器不可能取代人类!那会取代什么呢?

在上海纽约大学2020届毕业生典礼上,阿里巴巴创始人马云表示,“机器是不可能取代人类的”。那什么会被取代呢?

月初 ·  1天前
不用任何数学方法,如何计算圆面积

借鉴统计学习和机器学习的核心原理,我们可以使用蒙特卡罗模拟和多项式/二次回归来创建基于计算的方法,以找到圆的面积公式。

机器之心 ·  1天前
人工智能的三大领域及其工业应用

在本文中,我将解释人工智能技术的三个主要方向,即语音识别,计算机视觉和自然语言处理。

工业应用 ·  1天前
Copyright©2005-2020 51CTO.COM 版权所有 未经许可 请勿转载