Github最新5大开源机器学习项目!数据计算快至80倍!

作者: 钛灵创新 2020-03-17 10:21:27

 通过这5个具有挑战性的开源机器学习项目,正确地开始2020年的学习吧!这些机器学习项目涵盖了广泛的领域,包括Python编程和NLP。

Github最新5大开源机器学习项目!数据计算快至80倍!

越来越多的人正在寻找一种过渡到数据科学的方法。无论是应届大学毕业生,还是该行业相对较新的参与者,还是中级专业人员,还是只是对机器学习感到好奇的人,每个人都希望从数据科学中分一杯羹。

我挑选了5个开源机器学习项目(于2020年1月创建),让你熟悉最新的最新框架和库。 你会看到从自然语言处理(NLP)到Python编程的所有内容。

1、Reformer– PyTorch中的高效迁移

Transformer体系结构改变了自然语言处理(NLP)格局。 它催生了许多NLP框架,例如BERT,XLNet,GPT-2等。

Github最新5大开源机器学习项目!数据计算快至80倍!

但是有一个问题,我敢肯定,你们中的大多数都将与之相关–这些以变压器为动力的模型很大。 他们取得了最先进的结果,但价格太昂贵,超出了大多数想要学习和实施它们的人们的范围。该项目的作者提供了一个简单而有效的示例以及整个代码,以帮助您构建自己的模型。

2、PandaPy –最受欢迎的Python库

上周我发现了PandaPy,并且已经在我当前的项目中使用了它。 这是一个迷人的Python库,具有成为主流的巨大潜力。

如果您正在使用混合数据类型(int,float,datetime,str等)进行机器学习项目,则应尝试使用PandaPy而不是Pandas。 对于这些数据类型,它消耗的内存比Pandas少大约三分之一!

这是您会发现有趣的三个关键领域(我从PandaPy GitHub存储库中逐字逐句地总结了这些观点):

1)对于小型数据集(即加号,多号,对数)的简单计算,PandaPy比Pandas快25倍-80倍

2)对于小型数据集上的表函数(即组,枢纽,放置,连接,填充,填充),PandaPy比Pandas快5倍-100倍。

3)对于大多数使用小数据的用例,PandaPy比Dask,Modin Ray和Pandas快

3、Google Earth Engine – 300多个Jupyter笔记本可分析地理空间数据

多么出色的GitHub存储库! 我有很多有抱负的数据科学家在社交平台上与我联系,询问如何开始进行地理空间分析。 这是一个非常有趣的领域,提供了PB级的数据。 我们只需要一种结构化的方法来清理和分析它。这个惊人的资料库是300多个Jupyter笔记本的集合,其中包含使用Google Earth Engine数据的示例。

Github最新5大开源机器学习项目!数据计算快至80倍!

这些笔记本依靠三个Python库来执行代码:

  • Earth Engine Python API
  • Folium
  • Geehydro

GitHub存储库包含大量带有Python代码的示例,以帮助新手入门。

4、Automated Visual Analytics 自动化视觉分析

这是为新手提供的另一种高质量的数据可视化创意。 在没有任何实质性框架的情况下,使数据探索步骤自动化的想法已经浮出了一段时间。 Automated Visual Analytics 旨在使视觉分析由AI驱动和自动化。

Github最新5大开源机器学习项目!数据计算快至80倍!

5、Fast Neptune–加速机器学习项目

如今,无论是在研究领域还是行业中,可重复性都是任何机器学习项目的关键方面。 我们需要跟踪我们执行的每个测试,每个迭代,我们的机器学习模型的每个参数以及结果。

Fast Neptune库使我们能够快速记录启动机器学习实验所需的所有信息。 换句话说,Fast Neptune是您在阅读以上段落时可能会问到的可重复性问题的答案。

以下是Fast Neptune用来帮助我们进行快速实验的功能:

  • 有关运行代码的计算机的元数据,包括操作系统和操作系统版本
  • 运行实验的笔记本的要求
  • 体验期间使用的参数,表示要跟踪的变量的值的名称
  • 在运行期间要记录的代码

最先进的技术持续快速发展,对于新来者来说,如何跟上进度,势必会变得不知所措。stay hungry!

人工智能 机器学习 技术
上一篇:华为开源只用加法的神经网络:实习生领衔打造,效果不输传统CNN 下一篇:盘点技术对抗新冠病毒的十种方式
评论
取消
暂无评论,快去成为第一个评论的人吧

更多资讯推荐

启明星辰严望佳:关于推进智能车联网安全风险评估的提案

网络安全与信息化是一体之两翼、驱动之双轮,在工业互联网智能化发展的同时必须同步推进人工智能赋能工业互联网安全。

kirazhou ·  10h前
机器学习:物联网成功的诀窍?

通过机器学习,物联网可以完美地运行。全球各地的组织正在竞相利用物联网的能力,但是,其中许多组织都被我们讨论过的一个或多个障碍所困扰。不过,不管您遇到什么问题,都可以通过结合了机器学习技术的方法来解决。

iothome ·  10h前
人工智能将“吞噬”数据

显然,更多数据将成为人工智能辅助解决方案的标志。对数据的渴求可能来自于更具挑战性的问题、对高级人工智能/分析的更好利用或者是端到端价值链的增长。

佚名 ·  14h前
人工智能对商业影响深远 AI可以为中小企业提供五大优势

市场趋势有多快发展?特别是关于人工智能。企业正在以惊人的速度利用人工智能。根据BI Intelligence的报告,到2020年,将有80%的公司使用AI聊天机器人。这是人工智能可以为您的中小型企业带来的五个优势。

AI国际站 ·  16h前
在网络安全领域应用机器学习的困难和对策

网络安全领域的独特对抗属性给人工智能应用落地带来了重重困难,但我们并不认为这最终会阻碍人工智能成为网络安全利器。

安全狗safedog ·  1天前
腾讯AI又创新纪录:ACL 2020入选27篇论文

近日,国际计算语言学协会年会(ACL,The Association for Computational Linguistics)在官网公布了ACL 2020的论文收录名单,共计收录779篇论文。据不完全统计,此次腾讯共有27篇论文入选,投中论文总数刷新国内记录,领跑国内业界AI研究第一梯队。

佚名 ·  3天前
这个受玩具启发打造的致动器或能让软体机器人具备跳跃能力

据外媒报道,不晓得大家有没有玩过popper这个玩具,当将其按下去之后则会跳起来。近日,它给了科研人员灵感,借其打造出一种能有朝一日让软体机器人跨越崎岖地形的致动器。

佚名 ·  3天前
5个杰出的商业机器学习用例

现在是仔细研究ML的好时机,看看您如何将其应用到您的业务中。下面是企业将ML应用到产品和服务创新的5种方式。

物联网IoT996 ·  4天前
Copyright©2005-2020 51CTO.COM 版权所有 未经许可 请勿转载