2020年AI和机器学习的重要趋势是什么?

作者: CDA数据分析师 2020-03-23 11:56:44

 在竞争日益激烈的技术市场中,从高科技初创公司到全球跨国公司都将人工智能视为关键竞争优势。

但是,人工智能行业发展如此之快,以至于很难跟踪最新的研究突破和成就,甚至很难应用科学成果来实现业务成果。

在2020年为了帮助业务制定强大的AI策略,本文总结了不同研究领域的最新趋势,包括自然语言处理,对话式AI,计算机视觉和强化学习。

自然语言处理

在2018年,经过预训练的语言模型突破了自然语言理解和生成的极限。这些也主导了去年自然语言处理的进展。

如果是NLP开发的新手,那么经过预先训练的语言模型可以使NLP的实际应用大大便捷,更快,更容易,因为它们允许在一个大型数据集上进行NLP模型的预先训练,然后快速对其进行微调以适应其他NLP任务。

来自优秀研究机构和科技公司的团队探索了使比较先进的语言模型更加复杂的方法。计算能力的大幅度提高推动了许多改进,但是许多研究小组还发现了更精巧的方法来减轻模型并保持高性能。

目前的研究趋势如下:

  • 新的NLP范例是"预训练+微调"。在过去的两年中,转移学习主导了NLP研究。ULMFiT,CoVe,ELMo,OpenAI GPT,BERT,OpenAI GPT-2,XLNet,RoBERTa,ALBERT –这是最近介绍的重要的预训练语言模型的详尽列表。尽管转移学习无疑将NLP推向了新的高度,但由于要求大量的计算成本和庞大的带注释数据集所以它经常会受到批评。
  • 语言学和知识可能会提高NLP模型的性能。专家认为,语言学可以通过改善数据驱动方法的可解释性来促进深度学习。利用上下文和人类知识可以进一步提高NLP系统的性能。
  • 神经机器翻译展示了可见的进步。同步机器翻译已经可以在现实世界中应用。最近的研究旨在突破通过优化神经网络体系结构,利用视觉上下文以及为无监督和半监督机器翻译引入新颖的方法来进一步提高翻译质量。

对话式AI

会话式AI已成为跨行业业务实践的组成部分。越来越多的公司正在利用聊天机器人为客户服务,为销售和营销带来的优势。

即使聊天机器人已成为领先企业的"必备"资产,但其性能仍然与人类相去甚远。来自主要研究机构和技术领导者的研究人员已经探索了提高对话系统性能的方法:

  • 对话系统正在改进跟踪对话的长期性。去年发表的许多研究论文的目标是,通过更好地利用对话历史和上下文,提高系统理解对话过程中引入的复杂关系的能力。
  • 许多研究团队正在解决机器生成响应的多样性。当前,现实世界中的聊天机器人通常会产生无聊且重复的响应。去年,引入了几篇优秀的研究 论文,旨在产生多样化而又相关的回应。
  • 情感识别被视为开放域聊天机器人的重要功能。因此,研究人员正在研究将同理心纳入对话系统的优秀方法。该研究领域的成就仍然很小,但是在情感识别方面的巨大进步可以显着提高社交机器人的性能和受欢迎程度,并且还可以增加聊天机器人在心理治疗中的使用。

计算机视觉

在过去的几年中,计算机视觉(CV)系统通过在医疗保健,安全,运输,零售,银行,农业等领域的成功应用,彻底改变了整个行业和业务功能。

最近引入的体系结构和方法(例如EfficientNet和SinGAN)进一步提高了视觉系统的感知能力和生成能力。

以下是计算机视觉中流行的研究主题:

  • 3D目前是CV领域的领先研究领域之一。今年,我们看到了几篇有趣的研究论文,旨在从2D投影重建3D世界。Google研究小组采用了一种新颖的方法来生成整个自然场景的深度图。Facebook AI团队提出了一种有趣的点云3D对象检测解决方案。
  • 无监督学习方法的普及正在增长。例如,斯坦福大学的一个研究小组介绍了一种有前途的局部聚合方法,可以在无监督学习的情况下进行对象检测和识别。在另一篇出色的论文中,该论文获得了ICCV 2019优秀论文奖的提名,该论文采用无监督学习来计算3D形状之间的对应关系。
  • 计算机视觉研究已与NLP成功结合。最新的研究进展使自然语言中的两个图像之间具有强大的更改字幕,3D环境中的视觉语言导航以及学习分层视觉语言表示的能力,从而可以更好地检索图像字幕和视觉基础。

强化学习

强化学习(RL)对于业务应用程序而言,其价值仍然比有监督的学习甚至无监督的学习低。它仅在可生成大量模拟数据的区域(例如机器人技术和游戏)中成功应用。

但是,许多专家认为RL是通向人工智能(AGI)或真正智能的有前途的途径。因此,来自优秀机构和技术领导者的研究团队正在寻找使RL算法更加高效和稳定的方法。强化学习中的热门研究主题包括:

  • 多主体强化学习(MARL)正在迅速发展。OpenAI团队最近展示了模拟捉迷藏环境中的代理如何建立研究人员不知道其环境支持的策略。另一篇出色的论文在ICML 2019 上获得了荣誉奖,以调查如果有相应的动机,多个代理如何相互影响。
  • 非政策评估和非政策学习对于未来的RL应用非常重要。该研究领域的最新突破包括在多种约束下用于处理策略学习的新解决方案,将参数模型和非参数模型相结合以及引入了一类新的非策略算法来迫使代理人采取接近策略的方式。
  • 勘探是可以取得重大进展的领域。在ICML 2019上发表的论文介绍了具有分布RL,最大熵探索和安全条件的新型有效探索方法,以应对强化学习中的桥梁效应。

这是有关NLP,对话式AI,计算机视觉和强化学习等比较受欢迎的子主题---新AI和机器学习研究趋势的概述 ,其中很多都对对业务都、有影响。

预计2020年应用人工智能领域将有更多突破,这些突破将基于2019年在机器学习方面取得的显着技术进步。

人工智能
上一篇:这个B站up主太硬核!纯手工打造AI小电视:硬件自己焊代码全手写 下一篇:企业为人工智能在数据中心的广泛应用做好准备了吗?
评论
取消
暂无评论,快去成为第一个评论的人吧

更多资讯推荐

芯片短缺对人工智能有多大伤害?

全球芯片短缺的影响随处可见:从家用电器价格上涨到消费电子设备产能受限。急需处理器的人工智能应用也正面临压力,不过SambaNova CEO表示,硬件本身并不是人工智能成功的决定性因素。

AI时代前沿 ·  22h前
2021年人工智能与自动化的发展趋势

自动化正在成为许多市场的首要任务,特别是随着远程工作的增长和劳动力短缺改变了传统的工作模式,很多企业转而采用更可持续的自动化解决方案。

Shelby Hiter ·  1天前
人工智能能否帮助金融行业有效应对勒索软件?

现在是金融机构安全意识进一步发展的时候了——这意味着要超越试图阻止勒索软件突破防火墙的预防性方法,专注于用能够检测和阻止攻击的工具武装自己。

Garry Veale ·  1天前
AI视频分析技术是如何工作的?原理是什么?

实时 AI 视频分析是一种基于人工智能的技术,可分析视频流以检测特定行为和事件的展开。这种类型的系统通过人工智能机器学习引擎检查来自监控摄像头的视频流来进行相关工作。该引擎使用一系列算法和程序来理解数据,并将数据转换为可理解的、有意义的信息。

EasyNVR ·  1天前
AI能成科学家的工具人?Nature采访五位顶尖学者:学会写代码,降低期望

AI 对于其他领域的科研来说是一个极其好用的工具,DNA测序、天文地理甚至艺术领域都必须要用到AI 模型来提供灵感。最近Nature 采访了五位跨领域的专家,听听他们对于AI 工具人有什么想法?

佚名 ·  1天前
人工智能与云计算正加速形成应用生态

人工智能在赋能生产力升级,推动各行业完成智能化转型和新旧动能转换的进程中发挥着重要作用。同时,人工智能技术也已经广泛应用在金融、教育、医疗、能源、消费、工业等各行业多场景之中。

佚名 ·  1天前
Facebook在ICCV 2021 发布两个3D模型,自监督才是终极答案?

在 ICCV 2021 上,Facebook AI提出了两个新模型3DETR和DepthContrast,这两个互补的新模型可促进3D理解并更容易上手。

佚名 ·  1天前
麻省理工学院使用AI加速3D打印新材料的发现

为了缩短发现这些新材料所需的时间,麻省理工学院的研究人员开发了一种数据驱动的过程,该过程使用机器学习来优化具有多种特性,如韧性和抗压强度的新型3D打印材料。

Yu ·  1天前
Copyright©2005-2021 51CTO.COM 版权所有 未经许可 请勿转载