仅用CPU就能跑到1000FPS,这是开源的C++跨平台人脸检测项目

作者: 佚名 2020-03-23 13:45:44

 总是被各种依赖环境蹂躏?看看这个 C++编写的跨平台人脸检测项目,电脑手机都可运行!

项目地址:https://github.com/ShiqiYu/libfacedetection

人脸检测可广泛应用于人机交互、安防监控、社交娱乐等领域,具有很强的实用价值,因此受到广泛关注与研究。在众多人脸检测方法中,使用卷积神经网络进行检测是目前较为流行的方法之一。然而在我们使用别人开源的项目时经常需要安装各种各样的依赖环境,不同的依赖环境在不同硬件平台或操作系统中支持程度不一样,增加了项目跨平台迁移的难度。

本文介绍的是一个使用卷积神经网络进行人脸检测的开源项目,它最大的亮点是能够在所有支持 C/C++的平台上编译运行。作者将预训练的 CNN 模型转换为静态变量后储存到了 C 文件里,使得该项目不需要任何其他依赖项(当然 OpenCV 还是需要的),仅仅只需要一个 C++编译器,就能在任何一个平台甚至嵌入式系统上编译并运行该项目。

仅用CPU就能跑到1000FPS,这是开源的C++跨平台人脸检测项目

尤其吸引人的是该项目使用 C++编写且支持 AVX2,在 i7 的 CPU 上就能跑出丧心病狂的 1000FPS!下图为项目作者给出的检测效果示例。

仅用CPU就能跑到1000FPS,这是开源的C++跨平台人脸检测项目

可以看到该项目不仅检测速度非常快,检测精度也很不错。于是,机器之心也上手测试了一番。

项目实测

我们在 Ubuntu 18.04 下测试这个人脸检测项目的效果。首先先使用一张相对简单的合照进行测试,其总共有 15 个人,分辨率为 970x546,检测结果如下图所示:

仅用CPU就能跑到1000FPS,这是开源的C++跨平台人脸检测项目

可以看到它准确的识别出了图片中所有的人像,在 CPU 上仅耗时 133ms 且置信度都为 99%。下图为加上 bounding box 后的检测效果图:

仅用CPU就能跑到1000FPS,这是开源的C++跨平台人脸检测项目

下面我们提高一下难度,使用一张开挂民族的图片测试一下效果。它也几乎把所有火车头上正面的面孔都识别出来了,火车车身上的人像没有识别出来,可能是因为那些人像实在是太小太密集的缘故。

仅用CPU就能跑到1000FPS,这是开源的C++跨平台人脸检测项目

编译过程

该项目编译需要 OpenCV,如果缺少 OpenCV 在使用 cmake 生成 makefile 时会报如下错误:

仅用CPU就能跑到1000FPS,这是开源的C++跨平台人脸检测项目

我们首先使用 wget https://github.com/opencv/opencv/archive/3.4.0.tar.gz 下载 OpenCV 3.4.0 的源码,紧接着安装编译 OpenCV 需要的相关依赖项:

  1. apt-get install build-essential 
  2. apt-get install cmake git libgtk2.0-dev pkg-config libavcodec-dev libavformat-dev libswscale-devadd-apt-repository "deb https://security.ubuntu.com/ubuntu xenial-security main" 
  3. apt-get install python-dev python-numpy libtbb2 libtbb-dev libjpeg-dev libpng-dev libtiff-dev libjasper-dev libdc1394-22-dev 

安装完依赖项之后我们将 OpenCV 的压缩包解压到当前目录下:

  1. tar xvzf 3.4.0.tar.gz 

为了避免在编译时将源码文件弄乱,我们新建一个名为 linuxidcbuild 的文件夹,在其下进行 OpenCV 的编译与安装:

  1. mkdir linuxidcbuild 
  2. cd linuxidcbuild/ 
  3. cmake ../opencv-3.4.0 -DWITH_GTK_2_X=ON -DCMAKE_INSTALL_PREFIX=/usr/local 

在生成 makefile 的过程中可能会出现卡在下图的情况,

仅用CPU就能跑到1000FPS,这是开源的C++跨平台人脸检测项目

这是由于 ippicv 下载不成功导致的,在以下链接手动下载系统对应的 ippicv 版本:

https://github.com/opencv/opencv_3rdparty/tree/ippicv/master_20170822/ippicv

之后使用 vim opencv-3.4.0/3rdparty/ippicv/ippicv.cmake 修改 OpenCV 的编译配置文件,将如下内容

"https://raw.githubusercontent.com/opencv/opencv_3rdparty/${IPPICV_COMMIT}/ippicv/ "

修改为我们刚存放 ippicv 的目录。再重新执行一次 cmake ../opencv-3.4.0 -DWITH_GTK_2_X=ON -DCMAKE_INSTALL_PREFIX=/usr/local,当出现下图的内容时说明成功生成了 makefile。

仅用CPU就能跑到1000FPS,这是开源的C++跨平台人脸检测项目

接下来我们执行 make 进行对 OpenCV 的编译:

仅用CPU就能跑到1000FPS,这是开源的C++跨平台人脸检测项目

这里编译的过程相对比较漫长,大约需要 20 分钟左右,消耗时间根据不同电脑配置会有所区别。当出现下图所示内容时说明编译完成。

仅用CPU就能跑到1000FPS,这是开源的C++跨平台人脸检测项目

之后使用 make install 进行安装,

仅用CPU就能跑到1000FPS,这是开源的C++跨平台人脸检测项目

安装成功后会出现如图所示界面:

仅用CPU就能跑到1000FPS,这是开源的C++跨平台人脸检测项目

以上即完成对 OpenCV 的安装。安装完成后使用 vim /etc/ld.so.conf.d/opencv.conf 对其进行配置,在文件中加入/usr/local/lib 后保存退出。

使用 vim /etc/bash.bashrc 添加环境变量,在文末加入 export PKG_CONFIG_PATH=$PKG_CONFIG_PATH:/usr/local/lib/pkgconfig,使用 source /etc/bash.bashrc 让新的环境变量生效。这样就配置好了 OpenCV,之后使用如下命令编译该项目:

  1. git clone https://github.com/ShiqiYu/libfacedetectioncd libfacedetectionmkdir build; cd build; cmake ..; make 

项目编译完成后会在 build 目录下生成对应可执行文件,可使用如下命令运行:

  1. ./detect-image-demo ../images/test.png 

虽然看似操作非常复杂,但实际上主要就是编译 OpenCV,其它模块都可以直接在项目中完成编译。最后,就可以愉快地使用这个极速人脸检测模型了。

人脸识别 人工智能 数据
上一篇:企业为人工智能在数据中心的广泛应用做好准备了吗? 下一篇:挑战马斯克Neuralink!斯坦福全新脑机接口,直连大脑和硅基芯片
评论
取消
暂无评论,快去成为第一个评论的人吧

更多资讯推荐

芯片短缺对人工智能有多大伤害?

全球芯片短缺的影响随处可见:从家用电器价格上涨到消费电子设备产能受限。急需处理器的人工智能应用也正面临压力,不过SambaNova CEO表示,硬件本身并不是人工智能成功的决定性因素。

AI时代前沿 ·  22h前
2021年人工智能与自动化的发展趋势

自动化正在成为许多市场的首要任务,特别是随着远程工作的增长和劳动力短缺改变了传统的工作模式,很多企业转而采用更可持续的自动化解决方案。

Shelby Hiter ·  1天前
人工智能能否帮助金融行业有效应对勒索软件?

现在是金融机构安全意识进一步发展的时候了——这意味着要超越试图阻止勒索软件突破防火墙的预防性方法,专注于用能够检测和阻止攻击的工具武装自己。

Garry Veale ·  1天前
AI视频分析技术是如何工作的?原理是什么?

实时 AI 视频分析是一种基于人工智能的技术,可分析视频流以检测特定行为和事件的展开。这种类型的系统通过人工智能机器学习引擎检查来自监控摄像头的视频流来进行相关工作。该引擎使用一系列算法和程序来理解数据,并将数据转换为可理解的、有意义的信息。

EasyNVR ·  1天前
AI能成科学家的工具人?Nature采访五位顶尖学者:学会写代码,降低期望

AI 对于其他领域的科研来说是一个极其好用的工具,DNA测序、天文地理甚至艺术领域都必须要用到AI 模型来提供灵感。最近Nature 采访了五位跨领域的专家,听听他们对于AI 工具人有什么想法?

佚名 ·  1天前
人工智能与云计算正加速形成应用生态

人工智能在赋能生产力升级,推动各行业完成智能化转型和新旧动能转换的进程中发挥着重要作用。同时,人工智能技术也已经广泛应用在金融、教育、医疗、能源、消费、工业等各行业多场景之中。

佚名 ·  1天前
Facebook在ICCV 2021 发布两个3D模型,自监督才是终极答案?

在 ICCV 2021 上,Facebook AI提出了两个新模型3DETR和DepthContrast,这两个互补的新模型可促进3D理解并更容易上手。

佚名 ·  1天前
麻省理工学院使用AI加速3D打印新材料的发现

为了缩短发现这些新材料所需的时间,麻省理工学院的研究人员开发了一种数据驱动的过程,该过程使用机器学习来优化具有多种特性,如韧性和抗压强度的新型3D打印材料。

Yu ·  1天前
Copyright©2005-2021 51CTO.COM 版权所有 未经许可 请勿转载