清华本科生开发强化学习平台「天授」:千行代码实现,刚刚开源

作者: 贾浩楠 2020-04-01 12:18:11

本文经AI新媒体量子位(公众号ID:QbitAI)授权转载,转载请联系出处。

江山代有才人出,开源一波更比一波强。

就在最近,一个简洁、轻巧、快速的深度强化学习平台,完全基于Pytorch,在Github上开源。

如果你也是强化学习方面的同仁,走过路过不要错过。

而且作者,还是一枚清华大学的本科生——翁家翌,他独立开发了”天授(Tianshou)“平台。

没错,名字就叫“天授”。

清华本科生开发强化学习平台「天授」:千行代码实现,刚刚开源

Why 天授?

主要有四大优点:

1、速度快,整个平台只用1500行左右代码实现,在已有的toy scenarios上面完胜所有其他平台,比如3秒训练一个倒立摆(CartPole)。

清华本科生开发强化学习平台「天授」:千行代码实现,刚刚开源

2、模块化,把所有policy都拆成4个模块:

init:策略初始化。process_fn:处理函数,从回放缓存中处理数据。call:根据观测值计算操作learn:从给定数据包中学习

只要完善了这些给定的接口就能在100行之内完整实现一个强化学习算法。

3、天授平台目前支持的算法有:

Policy Gradient (PG)
Deep Q-Network (DQN)
Double DQN (DDQN) with n-step returns
Advantage Actor-Critic (A2C)
Deep Deterministic Policy Gradient (DDPG)
Proximal Policy Optimization (PPO)
Twin Delayed DDPG (TD3)
Soft Actor-Critic (SAC)

随着项目的开发,会有更多的强化学习算法加入天授。

4、接口灵活:用户可以定制各种各样的训练方法,只用少量代码就能实现。

如何使用天授

以DQN(Deep-Q-Network)算法为例,我们在天授平台上使用CartPole小游戏,对它的agent进行训练。

配置环境

习惯上使用OpenAI Gym,如果使用Python代码,只需要简单的调用Tianshou即可。

CartPole-v0是一个可应用DQN算法的简单环境,它拥有离散操作空间。配置环境时,你需要注意它的操作空间是连续还是离散的,以此选择适用的算法。

设置多环境层

你可以使用现成的gym.Env:

清华本科生开发强化学习平台「天授」:千行代码实现,刚刚开源

也可以选择天授提供的三种向量环境层:VectorEnv、SubprocVectorEnv和RayVectorEnv,如下所示:

清华本科生开发强化学习平台「天授」:千行代码实现,刚刚开源

示例中分别设置了8层和100层环境。

建立网络

天授支持任意用户自主定义的网络或优化器,但有接口限制。

清华本科生开发强化学习平台「天授」:千行代码实现,刚刚开源

以下是一个正确的示例:

清华本科生开发强化学习平台「天授」:千行代码实现,刚刚开源

设置策略

我们使用已定义的net和optim(有额外的策略超参数)来定义一个策略。下方我们用一个目标网络来定义DQN算法策略。

清华本科生开发强化学习平台「天授」:千行代码实现,刚刚开源

设置收集器

收集器是天授的关键概念,它使得策略能够高效的与不同环境交互。每一步,收集器都会将该策略的操作数据记录在一个回放缓存中。

清华本科生开发强化学习平台「天授」:千行代码实现,刚刚开源

训练

天授提供了训练函数onpolicy_trainer和offpolicy_trainer。当策略达到终止条件时,他们会自动停止训练。由于DQN是无策略算法,我们使用offpolicy_trainer。

清华本科生开发强化学习平台「天授」:千行代码实现,刚刚开源

训练器支持TensorBoard记录,方法如下:

清华本科生开发强化学习平台「天授」:千行代码实现,刚刚开源

将参数writer输入训练器中,训练结果会被记录在TensorBoard中。

清华本科生开发强化学习平台「天授」:千行代码实现,刚刚开源

记录显示,我们在几乎4秒的时间内完成了对DQN的训练。

保存/加载策略

因为我们的策略沿袭自torch.nn.Module,所以保存/加载策略方法与torch模块相同。

清华本科生开发强化学习平台「天授」:千行代码实现,刚刚开源

观察模型表现

收集器支持呈现功能,以35帧率观察模型方法如下:

清华本科生开发强化学习平台「天授」:千行代码实现,刚刚开源

用你自己的代码训练策略

如果你不想用天授提供的训练器也没问题,以下是使用自定义训练器的方法。

清华本科生开发强化学习平台「天授」:千行代码实现,刚刚开源

上手体验

天授需要Python3环境。以CartPole训练DQN模型为例,输入test_dqn.py代码进行训练,其结果统计如下:

清华本科生开发强化学习平台「天授」:千行代码实现,刚刚开源

可以看出整个训练过程用时7.36秒,与开发者给出的训练时间符合。

模型训练结果如下:

清华本科生开发强化学习平台「天授」:千行代码实现,刚刚开源

作者介绍

天授的开发者:翁家翌,清华大学的在读大四本科生。

高中毕业于福州一中,前NOI选手。

大二时作就作为团队主要贡献者获得了强化学习国际比赛vizdoom的冠军。他希望能将天授平台深入开发,成为强化学习平台的标杆。开源也是希望有更多的小伙伴加入这个项目。

传送门:

PyPI提供天授平台下载,你也可以在Github上找到天授的最新版本和其他资料。

PYPI:

https://pypi.org/project/tianshou/

Github天授主页:

https://github.com/thu-ml/tianshou

人工智能 强化学习 开源
上一篇:脑机接口利器,从脑波到文本,只需要一个机器翻译模型 下一篇:破解机器学习的误区——常见机器学习神话究竟从何而来?
评论
取消
暂无评论,快去成为第一个评论的人吧

更多资讯推荐

启明星辰严望佳:关于推进智能车联网安全风险评估的提案

网络安全与信息化是一体之两翼、驱动之双轮,在工业互联网智能化发展的同时必须同步推进人工智能赋能工业互联网安全。

kirazhou ·  10h前
人工智能将“吞噬”数据

显然,更多数据将成为人工智能辅助解决方案的标志。对数据的渴求可能来自于更具挑战性的问题、对高级人工智能/分析的更好利用或者是端到端价值链的增长。

佚名 ·  14h前
人工智能对商业影响深远 AI可以为中小企业提供五大优势

市场趋势有多快发展?特别是关于人工智能。企业正在以惊人的速度利用人工智能。根据BI Intelligence的报告,到2020年,将有80%的公司使用AI聊天机器人。这是人工智能可以为您的中小型企业带来的五个优势。

AI国际站 ·  16h前
在网络安全领域应用机器学习的困难和对策

网络安全领域的独特对抗属性给人工智能应用落地带来了重重困难,但我们并不认为这最终会阻碍人工智能成为网络安全利器。

安全狗safedog ·  1天前
腾讯AI又创新纪录:ACL 2020入选27篇论文

近日,国际计算语言学协会年会(ACL,The Association for Computational Linguistics)在官网公布了ACL 2020的论文收录名单,共计收录779篇论文。据不完全统计,此次腾讯共有27篇论文入选,投中论文总数刷新国内记录,领跑国内业界AI研究第一梯队。

佚名 ·  3天前
这个受玩具启发打造的致动器或能让软体机器人具备跳跃能力

据外媒报道,不晓得大家有没有玩过popper这个玩具,当将其按下去之后则会跳起来。近日,它给了科研人员灵感,借其打造出一种能有朝一日让软体机器人跨越崎岖地形的致动器。

佚名 ·  3天前
AI助推智慧交通建设加速 警用无人机高速执勤

智慧交通是在整个交通运输领域充分利用物联网、空间感知、云计算、移动互联网等新一代信息技术,综合运用交通科学、系统方法、人工智能、知识挖掘等理论与工具。

佚名 ·  4天前
机器学习算法集锦:从贝叶斯到深度学习及各自优缺点

本文筛选并简单介绍了一些最常见算法类别,还为每一个类别列出了一些实际的算法并简单介绍了它们的优缺点。

佚名 ·  4天前
Copyright©2005-2020 51CTO.COM 版权所有 未经许可 请勿转载