在医疗保健中使用AI:将数据转化为行动

作者: 物联网IoT996 2020-04-22 11:58:34

在医疗保健领域,不乏支持人工智能(AI)好处的统计、调查和行业炒作。人工智能已经在我们的日常生活中发挥了重要作用。医疗保健可能是人工智能对我们日常生活影响最大的领域之一。尽管如此,我们才刚刚开始了解人工智能在医疗服务方面的作用。

如今,当大量的数据需要考虑时,人工智能在自动定义和可重复的任务上提供了直接的好处。这使得它在医疗保健领域特别具有吸引力,因为在医疗保健领域,每天都会生成新的数据量,并且会执行许多重复的、定义良好的和例行的任务。人工智能目前可以执行耗时、重复,而且可能容易出现人为错误的人类任务。

尽管安全有效,但医疗领域的AI仍处于起步阶段,但我们开始看到该行业取得了长足的进步。这只是AI已经帮助简化工作流程和改善医疗保健流程的几种方式。

将数据转换为可行的信息

人体产生大量内部数据。收集患者的生命体征,实验室检查结果,书面笔记和影像数据是在护理期间做出良好临床决策的关键因素。将其与其他可能相关的终生健康数据(例如就诊,诊断,处方和自我报告的症状)相结合,然后将这些数据遍及广大人口,这是一项令人头晕的任务。世界上没有足够的医生来尽快分析所生成的所有信息。

当我们与卫生系统会面时,高管关注的第一大领域就是数据。每个人都希望数据能够支持和发展直觉。如果不能用于改善医疗保健或医疗保健交付,收集数据毫无意义。值得庆幸的是,人工智能能够分析大量数据集,以得出专业人士可以用来制定更早和更明智的决策的可行见解。

这些数据集中的某些信号和模式要么对于人眼来说太微妙,要么需要在大量数据中进行表征,才能真正具有代表性和价值。我们仍然无法理解这些模式与未来结果的关系,因为我们无法收集或大规模分析数据,但是这种情况正在改变。

有了足够的训练数据和标签,深度学习就可以识别出人类难以理解的模式。AI允许大量的计算能力来学习成千上万患者的模式。这将使医生能够更快地做出反应,并在严重事件之前解决健康事件。

进入医疗物联网(IoMT)

以前,只有在ICU中才能连续监视患者。ICU监视器具有许多引线和导线,因此在一般医疗和外科部门以及其他低敏度环境中不可行。在这些环境中,生命体征采集每四个小时左右就被限制一次,直到下一次检查时才发现恶化。只有使用一般的EMR或其他罕见的数据才有可能进行风险分层。

这已经改变了。利用当今的连接选项,舒适地戴在患者手臂上的无线监控设备现在可以以适用于低敏锐环境的方式连续向护理团队提供ICU口径的健康数据。

虽然ICU的患者人数很少,但在诸如普通医疗和外科病房等低敏锐度地区,患者却呈指数增长。因此,仅生成数据不太可能解决问题-医院中没有足够的医生来处理此数量的数据。

这就是AI成为强大盟友的地方。AI提供了对健康数据的即时和连续评估,以识别可能恶化的患者。这样可以更好地利用我们的医疗保健专业人员,他们可以将时间集中在最需要他们的患者身上。

远程病人监控(RPM)设备是医生和护理团队的关键辅助设备。在医院里更快地发现病人的健康状况恶化,有可能大大减少过早出院的病人数量,而在同样的情况下不久又会重新入院。在美国,再住院目前是一个400亿美元的问题。

主动与被动护理:家庭中的AI

随着医疗资源变得越来越紧张,并且随着我们的人口老龄化和病情的加剧,医疗服务提供者正在寻求新的模式以允许在家中提供更多的医疗保健。医院正在成为住院时间较短的四级治疗中心,每个卫生系统都希望尽量减少再次住院和昂贵的计划外急诊就诊。

为此,我们必须能够确定哪些患者可以安全地作为门诊患者,哪些患者会发生败血症以及哪些患者不需要治疗。能够以极高的灵敏度和特异性来预测这些结果的AI模型的开发,将完全重塑我们的医疗系统。

远程患者监控设备使患者无需坐病床,就可以享受自己家中的舒适和熟悉的感觉,同时知道有人在照看他们,可以放心。以前,一旦患者离开医院,几乎不可能监测他们的健康。许多患者直到最早的症状开始并且病情恶化后才打电话给医生。

借助RPM,可以从患者那里被动收集生命体征和其他健康数据,并将其发送到云中,如果该人开始不适,则AI模型可以警告相应的医疗保健专业人员。这种管理吞吐量(将信号与噪声分离)的能力是AI的力量。它使医疗保健专业人员将精力集中在最需要关注的患者上,并帮助不需要医疗保健的患者在家中感到越来越安全。 许多患者只需要保证一切都将正常就可以。

通过AI对健康数据的分析(可从这些远程监控设备连续捕获)实现的早期检测功能,使医疗保健专业人员从反应式护理转变为主动式护理。降低医疗保健成本的最佳方法是在较低的敏锐度和较低的成本点进行治疗。这意味着要在急诊室就诊之前和要求再次入院之前对患者进行治疗。

在可预见的将来,人工智能将在提高医疗保健吞吐量,帮助我们将有限的医疗保健资源更好地部署到最需要关注的患者并尽早交付方面发挥重要作用。但是,尽管对AI和IoT的承诺很高,但计算机没有情感。这是计算的力量,也是它的弱点。医疗保健专业人员是医疗保健提供的重要组成部分;他们是将信息转化为行动的人。通常,所需的决定与不做什么有关,许多信息是主观的,只能通过与人的真实接触来获取。

目前,人工智能不可能取代人类的直觉和开箱即用的能力,并能分辨出结果。但是,诸如AI之类的工具将从根本上帮助重塑我们提供医疗保健的方式,并将以经济上可持续的方式改善患者,医生和其他医疗保健专业人员的生活。

尽管已经提高了患者护理水平并改善了临床过程,但该行业才刚刚开始涉足这一领域。

医疗保健 AI 人工智能
上一篇:人工智能定义基础设施的应用和发展 下一篇:现在的人工智能只是“窄AI”?
评论
取消
暂无评论,快去成为第一个评论的人吧

更多资讯推荐

科技史上超炸组合「元宇宙+脑机接口」,离我们还有多远?

技术推进门槛很硬,资本市场敬而远之,伦理问题纠缠不清。脑机接口距离元宇宙还差了几个"VR元年"?

董子博 ·  1天前
芯片短缺对人工智能有多大伤害?

全球芯片短缺的影响随处可见:从家用电器价格上涨到消费电子设备产能受限。急需处理器的人工智能应用也正面临压力,不过SambaNova CEO表示,硬件本身并不是人工智能成功的决定性因素。

AI时代前沿 ·  2天前
2021年人工智能与自动化的发展趋势

自动化正在成为许多市场的首要任务,特别是随着远程工作的增长和劳动力短缺改变了传统的工作模式,很多企业转而采用更可持续的自动化解决方案。

Shelby Hiter ·  2天前
人工智能能否帮助金融行业有效应对勒索软件?

现在是金融机构安全意识进一步发展的时候了——这意味着要超越试图阻止勒索软件突破防火墙的预防性方法,专注于用能够检测和阻止攻击的工具武装自己。

Garry Veale ·  2天前
AI视频分析技术是如何工作的?原理是什么?

实时 AI 视频分析是一种基于人工智能的技术,可分析视频流以检测特定行为和事件的展开。这种类型的系统通过人工智能机器学习引擎检查来自监控摄像头的视频流来进行相关工作。该引擎使用一系列算法和程序来理解数据,并将数据转换为可理解的、有意义的信息。

EasyNVR ·  2天前
AI能成科学家的工具人?Nature采访五位顶尖学者:学会写代码,降低期望

AI 对于其他领域的科研来说是一个极其好用的工具,DNA测序、天文地理甚至艺术领域都必须要用到AI 模型来提供灵感。最近Nature 采访了五位跨领域的专家,听听他们对于AI 工具人有什么想法?

佚名 ·  2天前
人工智能与云计算正加速形成应用生态

人工智能在赋能生产力升级,推动各行业完成智能化转型和新旧动能转换的进程中发挥着重要作用。同时,人工智能技术也已经广泛应用在金融、教育、医疗、能源、消费、工业等各行业多场景之中。

佚名 ·  2天前
Facebook在ICCV 2021 发布两个3D模型,自监督才是终极答案?

在 ICCV 2021 上,Facebook AI提出了两个新模型3DETR和DepthContrast,这两个互补的新模型可促进3D理解并更容易上手。

佚名 ·  2天前
Copyright©2005-2021 51CTO.COM 版权所有 未经许可 请勿转载