在医疗保健中使用AI:将数据转化为行动

作者: 物联网IoT996 2020-04-22 11:58:34

在医疗保健领域,不乏支持人工智能(AI)好处的统计、调查和行业炒作。人工智能已经在我们的日常生活中发挥了重要作用。医疗保健可能是人工智能对我们日常生活影响最大的领域之一。尽管如此,我们才刚刚开始了解人工智能在医疗服务方面的作用。

如今,当大量的数据需要考虑时,人工智能在自动定义和可重复的任务上提供了直接的好处。这使得它在医疗保健领域特别具有吸引力,因为在医疗保健领域,每天都会生成新的数据量,并且会执行许多重复的、定义良好的和例行的任务。人工智能目前可以执行耗时、重复,而且可能容易出现人为错误的人类任务。

尽管安全有效,但医疗领域的AI仍处于起步阶段,但我们开始看到该行业取得了长足的进步。这只是AI已经帮助简化工作流程和改善医疗保健流程的几种方式。

将数据转换为可行的信息

人体产生大量内部数据。收集患者的生命体征,实验室检查结果,书面笔记和影像数据是在护理期间做出良好临床决策的关键因素。将其与其他可能相关的终生健康数据(例如就诊,诊断,处方和自我报告的症状)相结合,然后将这些数据遍及广大人口,这是一项令人头晕的任务。世界上没有足够的医生来尽快分析所生成的所有信息。

当我们与卫生系统会面时,高管关注的第一大领域就是数据。每个人都希望数据能够支持和发展直觉。如果不能用于改善医疗保健或医疗保健交付,收集数据毫无意义。值得庆幸的是,人工智能能够分析大量数据集,以得出专业人士可以用来制定更早和更明智的决策的可行见解。

这些数据集中的某些信号和模式要么对于人眼来说太微妙,要么需要在大量数据中进行表征,才能真正具有代表性和价值。我们仍然无法理解这些模式与未来结果的关系,因为我们无法收集或大规模分析数据,但是这种情况正在改变。

有了足够的训练数据和标签,深度学习就可以识别出人类难以理解的模式。AI允许大量的计算能力来学习成千上万患者的模式。这将使医生能够更快地做出反应,并在严重事件之前解决健康事件。

进入医疗物联网(IoMT)

以前,只有在ICU中才能连续监视患者。ICU监视器具有许多引线和导线,因此在一般医疗和外科部门以及其他低敏度环境中不可行。在这些环境中,生命体征采集每四个小时左右就被限制一次,直到下一次检查时才发现恶化。只有使用一般的EMR或其他罕见的数据才有可能进行风险分层。

这已经改变了。利用当今的连接选项,舒适地戴在患者手臂上的无线监控设备现在可以以适用于低敏锐环境的方式连续向护理团队提供ICU口径的健康数据。

虽然ICU的患者人数很少,但在诸如普通医疗和外科病房等低敏锐度地区,患者却呈指数增长。因此,仅生成数据不太可能解决问题-医院中没有足够的医生来处理此数量的数据。

这就是AI成为强大盟友的地方。AI提供了对健康数据的即时和连续评估,以识别可能恶化的患者。这样可以更好地利用我们的医疗保健专业人员,他们可以将时间集中在最需要他们的患者身上。

远程病人监控(RPM)设备是医生和护理团队的关键辅助设备。在医院里更快地发现病人的健康状况恶化,有可能大大减少过早出院的病人数量,而在同样的情况下不久又会重新入院。在美国,再住院目前是一个400亿美元的问题。

主动与被动护理:家庭中的AI

随着医疗资源变得越来越紧张,并且随着我们的人口老龄化和病情的加剧,医疗服务提供者正在寻求新的模式以允许在家中提供更多的医疗保健。医院正在成为住院时间较短的四级治疗中心,每个卫生系统都希望尽量减少再次住院和昂贵的计划外急诊就诊。

为此,我们必须能够确定哪些患者可以安全地作为门诊患者,哪些患者会发生败血症以及哪些患者不需要治疗。能够以极高的灵敏度和特异性来预测这些结果的AI模型的开发,将完全重塑我们的医疗系统。

远程患者监控设备使患者无需坐病床,就可以享受自己家中的舒适和熟悉的感觉,同时知道有人在照看他们,可以放心。以前,一旦患者离开医院,几乎不可能监测他们的健康。许多患者直到最早的症状开始并且病情恶化后才打电话给医生。

借助RPM,可以从患者那里被动收集生命体征和其他健康数据,并将其发送到云中,如果该人开始不适,则AI模型可以警告相应的医疗保健专业人员。这种管理吞吐量(将信号与噪声分离)的能力是AI的力量。它使医疗保健专业人员将精力集中在最需要关注的患者上,并帮助不需要医疗保健的患者在家中感到越来越安全。 许多患者只需要保证一切都将正常就可以。

通过AI对健康数据的分析(可从这些远程监控设备连续捕获)实现的早期检测功能,使医疗保健专业人员从反应式护理转变为主动式护理。降低医疗保健成本的最佳方法是在较低的敏锐度和较低的成本点进行治疗。这意味着要在急诊室就诊之前和要求再次入院之前对患者进行治疗。

在可预见的将来,人工智能将在提高医疗保健吞吐量,帮助我们将有限的医疗保健资源更好地部署到最需要关注的患者并尽早交付方面发挥重要作用。但是,尽管对AI和IoT的承诺很高,但计算机没有情感。这是计算的力量,也是它的弱点。医疗保健专业人员是医疗保健提供的重要组成部分;他们是将信息转化为行动的人。通常,所需的决定与不做什么有关,许多信息是主观的,只能通过与人的真实接触来获取。

目前,人工智能不可能取代人类的直觉和开箱即用的能力,并能分辨出结果。但是,诸如AI之类的工具将从根本上帮助重塑我们提供医疗保健的方式,并将以经济上可持续的方式改善患者,医生和其他医疗保健专业人员的生活。

尽管已经提高了患者护理水平并改善了临床过程,但该行业才刚刚开始涉足这一领域。

医疗保健 AI 人工智能
上一篇:人工智能定义基础设施的应用和发展 下一篇:现在的人工智能只是“窄AI”?
评论
取消
暂无评论,快去成为第一个评论的人吧

更多资讯推荐

AI安全对抗中,只用一招轻松骗过五种神经网络

图像识别作为人工智能最成熟的应用领域,已经大规模落地并服务于人们的日常生活。但在大规模商业化的同时,也面临更多方面的威胁。

张鑫 ·  1天前
盘点人工智能十大经典应用领域、图解技术原理

本文通过案例分门别类地深入探讨人工智能的实际应用。案例甚多,此处所列举的仅是九牛一毛。本该按行业或业务对这些案例进行分类,但相反我选择按在行业或业务中最可能应用的顺序来分类。

Alex Castrounis ·  1天前
详解人工智能十大经典应用领域及其技术原理

本文通过案例分门别类地深入探讨人工智能的实际应用。案例甚多,此处所列举的仅是九牛一毛。本该按行业或业务对这些案例进行分类,但相反我选择按在行业或业务中最可能应用的顺序来分类。

华章科技 ·  1天前
目标驱动系统模式,能否成为实现人工通用智能(AGI)的关键?

组织开发AI方案时采取的一大核心模式,正是目标驱动型系统模式。与其他AI模式一样,这种形式的AI能够解决一系列原本需要人类认知能力才能处理的常见问题。

佚名 ·  1天前
后疫情时代的八大关键技术发展趋势

建立必要的基础架构以支持数字化世界并保持比较新的技术,这对于任何企业或国家在后疫情时代的世界中保持竞争力都至关重要。

Ahmed Banafa ·  2天前
从AI测温到安防机器人 智能安防会是新的“守门神”吗?

说起安防系统,很多人的脑海中会先冒出“监控摄像头”,“电子门禁”等字眼,而随着人工智能的加速发展,传统的安防系统短板也在逐渐暴露,越来越多的新功能开始被需要:人脸识别、车辆检测、夜间识别等等,而我们小时候幻想过的机器人站岗的场景,也正在逐渐变成现实……

王嘉陆 ·  2天前
疫情期间,如何借AI之力持续提升客户忠诚度?

无论是保险公司Farmers Insurance,保险公司Tryg,还是通用汽车金融公司GM Financial,现在纷纷转向聊天机器人与AI技术,借此在疫情时期稳定客户群体。

佚名 ·  2天前
了解有关符号人工智能,象征性AI的好处和局限性

如今,人工智能主要是关于人工神经网络和深度学习。但这并非总是如此。实际上,在过去的十年中,该领域大部分都由象征性人工智能主导,也被称为“经典AI”,“基于规则的AI”和“老式的AI”。

AI国际站 ·  2天前
Copyright©2005-2020 51CTO.COM 版权所有 未经许可 请勿转载