探索对话式AI及其技术组件的能力

作者: 佚名 2020-04-27 15:14:10

 今天,自动化、人工智能(AI)和自然语言处理(NLP)的进步使设计经济高效的数字体验成为可能。现在,信息可以是有目的的、简单的和自然的,客户与企业的对话越来越类似于与员工的面对面对话。

探索对话式AI及其技术组件的能力

根据Deloitte的报告,以这种创新能力为基础,以程序化和智能化的方式提供对话体验,通过数字和电信技术模拟与真实人的对话,并提供丰富的数据集和意图,为客户提供非正式、引人入胜的体验,数字化产品、平台以及与通信、销售和服务咨询以及其他客户服务相关的体验,以及其他客户服务。

2019年至2024年期间,对话式人工智能市场规模预计将从2019年的42亿美元增长到2024年的157亿美元,复合年增长率为30.2%。

使用对话式人工智能,企业可以提供个性化的差异化体验,从而与客户建立关系。每一次互动都会让人感觉像是一场1:1的对话,可以感知上下文,并从过去的互动中获得信息。

对话式人工智能汇集了八个技术组件,包括自然语言处理、意图识别、实体识别、实现、语音优化响应、动态文本到语音、智能机器学习和上下文感知。NLP是“阅读”或解析人类语言文本的能力。这是理解自然句子结构与简单关键字“触发器”的前提条件。意图识别是系统理解用户请求的能力,即使是出乎意料的措辞也是如此。如果您不想因为体验中的障碍而惹恼您的用户,那么良好的意图识别是至关重要的。

此外,实体识别表示理解某些文本指的是信息性抽象类别(实体),例如“2月2日”=日期。这对于更复杂的命令和分析是必要的。其中,实现是指使用API从Web服务或数据库中提取数据、运行条件并通知对话管理器的能力,语音优化响应是指系统以人类的方式参与对话并显示情感以提供优化体验的能力。

动态文本到语音转换将书面文本转换为听起来自然的语音,支持各种语言、声音和口音。它允许强调大写字母和声调变化。语境意识是通过对话跟踪对话历史、翻译、回忆和记忆信息的能力。这对于自然的、像人类一样的来回交谈是必要的。机器学习是关于如何通过分析人类代理响应来学习如何更好地响应用户。ML对于提高意图识别是必要的。

报告和监控以及安全和合规性是对话式人工智能的其他支持元素。通过提供见解和分析来告诉您的对话代理如何运行的能力称为“报告和监视”,而在各个平台之间减轻安全风险,安全性和日志记录功能的能力被称为“安全性和合规性”。

人工智能 技术 安全
上一篇:微软CTO:人工智能将如何帮助农村人口度过一场大流行病? 下一篇:情感AI给企业IT领导者带来希望
评论
取消
暂无评论,快去成为第一个评论的人吧

更多资讯推荐

芯片短缺对人工智能有多大伤害?

全球芯片短缺的影响随处可见:从家用电器价格上涨到消费电子设备产能受限。急需处理器的人工智能应用也正面临压力,不过SambaNova CEO表示,硬件本身并不是人工智能成功的决定性因素。

AI时代前沿 ·  21h前
2021年人工智能与自动化的发展趋势

自动化正在成为许多市场的首要任务,特别是随着远程工作的增长和劳动力短缺改变了传统的工作模式,很多企业转而采用更可持续的自动化解决方案。

Shelby Hiter ·  1天前
人工智能能否帮助金融行业有效应对勒索软件?

现在是金融机构安全意识进一步发展的时候了——这意味着要超越试图阻止勒索软件突破防火墙的预防性方法,专注于用能够检测和阻止攻击的工具武装自己。

Garry Veale ·  1天前
AI视频分析技术是如何工作的?原理是什么?

实时 AI 视频分析是一种基于人工智能的技术,可分析视频流以检测特定行为和事件的展开。这种类型的系统通过人工智能机器学习引擎检查来自监控摄像头的视频流来进行相关工作。该引擎使用一系列算法和程序来理解数据,并将数据转换为可理解的、有意义的信息。

EasyNVR ·  1天前
AI能成科学家的工具人?Nature采访五位顶尖学者:学会写代码,降低期望

AI 对于其他领域的科研来说是一个极其好用的工具,DNA测序、天文地理甚至艺术领域都必须要用到AI 模型来提供灵感。最近Nature 采访了五位跨领域的专家,听听他们对于AI 工具人有什么想法?

佚名 ·  1天前
人工智能与云计算正加速形成应用生态

人工智能在赋能生产力升级,推动各行业完成智能化转型和新旧动能转换的进程中发挥着重要作用。同时,人工智能技术也已经广泛应用在金融、教育、医疗、能源、消费、工业等各行业多场景之中。

佚名 ·  1天前
Facebook在ICCV 2021 发布两个3D模型,自监督才是终极答案?

在 ICCV 2021 上,Facebook AI提出了两个新模型3DETR和DepthContrast,这两个互补的新模型可促进3D理解并更容易上手。

佚名 ·  1天前
如何使用Auto-Sklearn和Auto-PyTorch实现自动化机器学习

如今,机器学习(ML)正在广泛地影响着商业、工程、以及研究等领域。通常,机器学习水平的进步,与软件和自动化的深入迭代有着密切的关系。

陈峻 ·  1天前
Copyright©2005-2021 51CTO.COM 版权所有 未经许可 请勿转载