揭秘AI基础设施堆栈,更快部署AI项目

编译作者: 布加迪 2020-05-07 07:00:00

【51CTO.com快译】随着许多公司加大对AI的投入,开发人员和工程师面临越来越大的压力,要求他们在整个企业更快地在大规模环境下部署AI项目。

在这个快速发展的环境中,仅仅评估不断扩大的AI工具和服务生态系统是个重大挑战,这些工具和服务常常是为不同的用户和目的设计的。

为了应对这一挑战,我们制作了AI基础设施堆栈(AI Infrastructure Stack),这个生态图直观显示了AI技术堆栈的各层和每一层内的供应商,更清楚地阐明了AI生态系统。

在英特尔资本公司,这有助于我们确定我们认为将对AI未来产生最大积极影响的投资,但它也有助于开发人员和工程师确定他们需要的资源,以最卓有成效的方式交付AI项目。

 AI基础设施堆栈

图1. AI基础设施堆栈

该技术基础设施堆栈专注于满足开发AI方面基本需求的横向解决方案,不管它部署在哪种类型的公司或行业。我们不包括针对特定行业的纵向解决方案。

该堆栈由7层组成,每层又分为两部分,这包括针对全然不同的工作负载、数据量、计算和内存需求以及SLA构建的解决方案:

  • 探索/训练解决方案,通过算法处理数据并创建模型。
  • 生产/推理解决方案,需要建议时,使用经过训练的模型予以响应——比如识别电子商务网站上“你可能也喜欢”的产品建议,或者决定何时对自动驾驶汽车踩刹车。

连接一切的是企业的分布式引擎——跨计算资源分配工作负载的计算平台。

栈的层数为:

  1. 硬件。合适的硬件是在数据中心中运行的训练解决方案的基础,也是在数据中心和边缘设备中运行的推理解决方案的基础。
  2. 软件加速器。这些是用于优化机器学习(ML)库的编译器和低级内核。
  3. 库。这些是用于训练ML模型的库。
  4. 数据科学框架。这一层包括将库与其他工具集成起来的工具。
  5. 编排。这些工具打包、部署和管理ML训练和模型推理的执行。没有这一层,DevOps就不可能实现。
  6. 自动化。这些工具简化并部分自动化为模型训练及其他ML任务准备数据的工作。
  7. 自主。这一层的工具将使构建、部署或维护ML模型的诸方面实现自动化。这就是AI训练AI的地方。

每一层的工具和服务加速了AI的开发和部署;然而与所有新兴技术一样,在决定使用哪种工具和服务时需要权衡和取舍。比如说,AutoML可以加快ML模型的开发,但是训练可能不如自定义模型来得准确。

用户要根据项目的需求来决定在每个层中使用哪些工具和服务。

AI基础设施堆栈的更高层的详细视图。

图2. AI基础设施堆栈的更高层的详细视图。

AI价值链的顶端是编排、自动化和自主这几层——自主层通过使AI更容易被任何人(而不仅仅是数据科学家)访问和使用,对实现AI的大众化变得更至关重要。

虽然这几层是整个堆栈的最新层,其中AI工具和服务支持AI的持续集成和持续部署(CI/CD),不过要注意:创新出现在整个堆栈中——打破新的边界,提高可用性,并将AI引入到新的社区。

最后,我们用工具、服务和公司(许多是开源)方面的例子来填充模型。它们不包括市场上的所有选择,它们对考虑AI解决方案的那些人来说就是样本,每一层都有一系列可靠的选择。

AI基础设施堆栈中工具、服务和公司的代表性例子。

图3. AI基础设施堆栈中工具、服务和公司的代表性例子。

AI不再处于起步阶段。对于力求利用AI来改进产品和服务,或者提高效率和改进决策的公司来说,现在有一个丰富的生态系统,其中的诸多工具和服务可用于构建、部署和监控ML和AI模型。

密切关注这个领域的所有动向以及各组成部分如何结合在一起,这关系到你的AI项目的成败。

原文标题:Demystifying the AI Infrastructure Stack,作者:Assaf Araki

【51CTO译稿,合作站点转载请注明原文译者和出处为51CTO.com】

AI 人工智能 基础设施
上一篇:特斯拉自动驾驶再次撞人致死,被害人家属告上法院 下一篇:再也不怕别人动电脑了!用Python实时监控
评论
取消
暂无评论,快去成为第一个评论的人吧

更多资讯推荐

芯片短缺对人工智能有多大伤害?

全球芯片短缺的影响随处可见:从家用电器价格上涨到消费电子设备产能受限。急需处理器的人工智能应用也正面临压力,不过SambaNova CEO表示,硬件本身并不是人工智能成功的决定性因素。

AI时代前沿 ·  21h前
2021年人工智能与自动化的发展趋势

自动化正在成为许多市场的首要任务,特别是随着远程工作的增长和劳动力短缺改变了传统的工作模式,很多企业转而采用更可持续的自动化解决方案。

Shelby Hiter ·  1天前
人工智能能否帮助金融行业有效应对勒索软件?

现在是金融机构安全意识进一步发展的时候了——这意味着要超越试图阻止勒索软件突破防火墙的预防性方法,专注于用能够检测和阻止攻击的工具武装自己。

Garry Veale ·  1天前
AI视频分析技术是如何工作的?原理是什么?

实时 AI 视频分析是一种基于人工智能的技术,可分析视频流以检测特定行为和事件的展开。这种类型的系统通过人工智能机器学习引擎检查来自监控摄像头的视频流来进行相关工作。该引擎使用一系列算法和程序来理解数据,并将数据转换为可理解的、有意义的信息。

EasyNVR ·  1天前
AI能成科学家的工具人?Nature采访五位顶尖学者:学会写代码,降低期望

AI 对于其他领域的科研来说是一个极其好用的工具,DNA测序、天文地理甚至艺术领域都必须要用到AI 模型来提供灵感。最近Nature 采访了五位跨领域的专家,听听他们对于AI 工具人有什么想法?

佚名 ·  1天前
人工智能与云计算正加速形成应用生态

人工智能在赋能生产力升级,推动各行业完成智能化转型和新旧动能转换的进程中发挥着重要作用。同时,人工智能技术也已经广泛应用在金融、教育、医疗、能源、消费、工业等各行业多场景之中。

佚名 ·  1天前
Facebook在ICCV 2021 发布两个3D模型,自监督才是终极答案?

在 ICCV 2021 上,Facebook AI提出了两个新模型3DETR和DepthContrast,这两个互补的新模型可促进3D理解并更容易上手。

佚名 ·  1天前
麻省理工学院使用AI加速3D打印新材料的发现

为了缩短发现这些新材料所需的时间,麻省理工学院的研究人员开发了一种数据驱动的过程,该过程使用机器学习来优化具有多种特性,如韧性和抗压强度的新型3D打印材料。

Yu ·  1天前
Copyright©2005-2021 51CTO.COM 版权所有 未经许可 请勿转载