快速比较多种机器学习模型实例

作者: 不靠谱的猫 2020-05-17 14:37:37

 介绍

当从事机器学习项目时,所有数据科学家都必须面对的一个问题是:哪种机器学习模型架构比较适合我的数据呢?

不幸的是,对于哪种模型比较好,还没有明确的答案。当面对这种不确定性的时候,常用的方法是:实验!

在本文中,我将向您展示如何快速测试数据集上的多个模型,以找到可能提供优质性能的机器学习模型,从而使您能够将精力集中在模型的微调和优化上。

机器学习数据集

在开始实验之前,我们需要一个数据集。我将假设我们的问题是有监督的二元分类任务。让我们从sklearn加载乳腺癌数据集开始。

  1. from sklearn.datasets import load_breast_cancer 
  2. X, y = data = load_breast_cancer(return_X_y=True

接下来,我们需要将数据拆分为训练集和测试集。拆分比例为75/25。

  1. from sklearn.model_selection import train_test_split 
  2. X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=8675309) 

Python编码

我们将在此数据集上快速测试6种不同模型的拟合度。

  1. 逻辑回归
  2. 随机森林
  3. K最近邻居
  4. 支持向量机
  5. 高斯朴素贝叶斯
  6. XGBoost

为了更准确地表示每个模型的拟合度,实际上是需要调整默认参数的,但是,本文出于演示目的,我将使用每个模型的默认参数,这样可以使总体思路更加清晰。

  1. from sklearn.linear_model import LogisticRegression 
  2. from sklearn.neighbors import KNeighborsClassifier 
  3. from sklearn.svm import SVC 
  4. from sklearn.ensemble import RandomForestClassifier 
  5. from sklearn.naive_bayes import GaussianNB 
  6. from xgboost import XGBClassifier 
  7. from sklearn import model_selection 
  8. from sklearn.utils import class_weight 
  9. from sklearn.metrics import classification_report 
  10. from sklearn.metrics import confusion_matrix 
  11. import numpy as np 
  12. import pandas as pd 
  13. def run_exps(X_train: pd.DataFrame , y_train: pd.DataFrame, X_test: pd.DataFrame, y_test: pd.DataFrame) -> pd.DataFrame: 
  14.     ''
  15.     Lightweight script to test many models and find winners 
  16. :param X_train: training split 
  17.     :param y_train: training target vector 
  18.     :param X_test: test split 
  19.     :param y_test: test target vector 
  20.     :return: DataFrame of predictions 
  21.     '''     
  22.     dfs = [] 
  23.     models = [ 
  24.           ('LogReg', LogisticRegression()),  
  25.           ('RF', RandomForestClassifier()), 
  26.           ('KNN', KNeighborsClassifier()), 
  27.           ('SVM', SVC()),  
  28.           ('GNB', GaussianNB()), 
  29.           ('XGB', XGBClassifier()) 
  30.         ] 
  31.     results = [] 
  32.     names = [] 
  33.     scoring = ['accuracy''precision_weighted''recall_weighted''f1_weighted''roc_auc'
  34.     target_names = ['malignant''benign'
  35.     for name, model in models: 
  36.         kfold = model_selection.KFold(n_splits=5, shuffle=True, random_state=90210) 
  37.         cv_results = model_selection.cross_validate(model, X_train, y_train, cv=kfold, scoring=scoring) 
  38.         clf = model.fit(X_train, y_train) 
  39.         y_pred = clf.predict(X_test) 
  40.         print(name
  41.         print(classification_report(y_test, y_pred, target_names=target_names)) 
  42.         results.append(cv_results) 
  43.         names.append(name
  44.         this_df = pd.DataFrame(cv_results) 
  45.         this_df['model'] = name 
  46.         dfs.append(this_df) 
  47.     final = pd.concat(dfs, ignore_index=True
  48.     return final 
  49. final=run_exps(X_train,y_train, X_test,  y_test ) 
  50. final 

在上面的Python代码中有很多东西需要解释。首先,我们创建一个变量dfs,该变量用来保存通过对训练集上应用5-fold交叉验证创建的数据集。

接下来,models保存在元组列表中,其中包含要测试的每个分类器的名称和类。在此之后,我们循环遍历这个列表并运行5-fold交叉验证。每次运行的结果都记录在我们附加到dfs列表的pandas dataframe中。必须注意,这里指标是两个类的加权平均指标。

测试集上的分类报告如下:

快速比较多种机器学习模型实例

评估结果

我们将分析从run_exps()脚本返回的final(dataframe)中的数据。

为了更好地估计每个模型的指标分布,我在30个样本上运行了empirical bootstrapping。此外,我将关注两个指标:性能指标和拟合时间指标。下面的Python代码块实现了这一点。

  1. bootstraps = [] 
  2. for model in list(set(final.model.values)): 
  3.     model_df = final.loc[final.model == model] 
  4.     bootstrap = model_df.sample(n=30, replace=True
  5.     bootstraps.append(bootstrap) 
  6.          
  7. bootstrap_df = pd.concat(bootstraps, ignore_index=True
  8. results_long = pd.melt(bootstrap_df,id_vars=['model'],var_name='metrics', value_name='values'
  9. time_metrics = ['fit_time','score_time'] # fit time metrics 
  10. ## PERFORMANCE METRICS 
  11. results_long_nofit = results_long.loc[~results_long['metrics'].isin(time_metrics)] # get df without fit data 
  12. results_long_nofit = results_long_nofit.sort_values(by='values'
  13. ## TIME METRICS 
  14. results_long_fit = results_long.loc[results_long['metrics'].isin(time_metrics)] # df with fit data 
  15. results_long_fit = results_long_fit.sort_values(by='values'

首先,让我们绘制来自5-fold交叉验证的性能指标。

  1. import matplotlib.pyplot as plt 
  2. import seaborn as sns 
  3. plt.figure(figsize=(20, 12)) 
  4. sns.set(font_scale=2.5) 
  5. g = sns.boxplot(x="model", y="values", hue="metrics", data=results_long_nofit, palette="Set3"
  6. plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) 
  7. plt.title('Comparison of Model by Classification Metric'
  8. #plt.savefig('./benchmark_models_performance.png',dpi=300) 
  9. plt.show() 
快速比较多种机器学习模型实例

很明显,支持向量机在所有指标上对我们的数据的拟合度都很差,而集成决策树模型(Random Forest和XGBoost)对数据的拟合非常好。

训练时间怎么样呢?

  1. plt.figure(figsize=(20, 12)) 
  2. sns.set(font_scale=2.5) 
  3. g = sns.boxplot(x="model", y="values", hue="metrics", data=results_long_fit, palette="Set3"
  4. plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) 
  5. plt.title('Comparison of Model by Fit and Score Time'
  6. plt.show() 
快速比较多种机器学习模型实例

随机森林虽然相对于KNN、GNB和LogReg来说比较慢,但其性能仅次于KNN。如果我继续细化模型,我可能会将大部分精力集中在随机森林上,因为它的性能几乎与XGBoost相同(它们的95%置信区间可能重叠),但训练速度几乎快了4倍!

如果您希望对这些模型进行更多的分析(例如,计算每个度量标准的置信区间),您将需要访问每个度量标准的均值和标准差。

  1. metrics = list(set(results_long_nofit.metrics.values)) 
  2. bootstrap_df.groupby(['model'])[metrics].agg([np.std, np.mean]) 
快速比较多种机器学习模型实例
  1. time_metrics = list(set(results_long_fit.metrics.values)) 
  2. bootstrap_df.groupby(['model'])[time_metrics].agg([np.std, np.mean]) 
快速比较多种机器学习模型实例

结论

上述分析只考虑了平均精度、召回率等。在实际问题中,您不太可能关心类之间的平均精度,相反,您可能会特别关注某个类的精度!此外,必须调整每个机器学习模型的超参数,以真正评估它们与数据的拟合程度。

机器学习 技术 架构
上一篇:AI聊天机器人如何缓解冠状病毒带来的人员配备问题 下一篇:大数据是否将我们拖到另一个AI冬天?
评论
取消
暂无评论,快去成为第一个评论的人吧

更多资讯推荐

如何使用Auto-Sklearn和Auto-PyTorch实现自动化机器学习

如今,机器学习(ML)正在广泛地影响着商业、工程、以及研究等领域。通常,机器学习水平的进步,与软件和自动化的深入迭代有着密切的关系。

陈峻 ·  2天前
人工智能(AI)从实验室到实际应用有何不同?

数据治理是人工智能AI实际应用中的核心问题。 组织在整个开发和生产生命周期中不仔细管理对数据的访问,人工智能的努力可能无法真正走出实验室。

钢铁导师贾大白 ·  3天前
科学家正开发像人类一样会“思考”的人工智能

由格拉斯哥大学心理学和神经科学学院领导的发表在《模式》杂志上的新研究,使用 3D 建模来分析深度神经网络处理信息的方式,也就是更广泛的机器学习家族的一部分,以可视化它们的信息处理如何与人类相匹配。

佚名 ·  4天前
解决人工智能偏见问题的重要步骤

人工智能技术的新进展为企业提供了更多改进业务的机会,但它们也具有内在偏见的风险。

HERO ·  2021-10-18 10:59:27
高速无人机独立穿越森林,全程自己规划路线,时速高达40公里

随着传感器功能和计算机能力的提升,无人机在更复杂环境中的飞行速度,很快能超过40公里/小时。

兴坤 ·  2021-10-15 10:22:37
人工智能正在改变软件开发模式

软件开发人员正在使用人工智能来帮助编写和审查代码、检测错误、测试软件和优化开发项目。这种帮助正在帮助公司更有效地部署新软件,并使新一代开发人员能够更轻松地学习编码。

Harris ·  2021-10-15 10:05:25
深度学习的工作原理:窥视驱动今日AI的神经网络的内部

今天人工智能的繁荣离不开一种名为深度学习的技术,该技术基于人工神经网络。本文通过图形解释了如何构建和训练这些神经网络。

布加迪 ·  2021-10-15 08:00:00
一个算法统治一切!DeepMind提出神经算法推理,深度学习和传统算法融合再现奇迹?

现在,DeepMind 想开创一条新路,他们要找到一种深度学习模型,模仿任何经典算法,并在现实世界实现功能。

佚名 ·  2021-10-14 10:34:38
Copyright©2005-2021 51CTO.COM 版权所有 未经许可 请勿转载