5行代码,快速实现图像分割,代码逐行详解,手把手教你处理图像

作者: 金磊 2020-05-21 14:50:48

 本文经AI新媒体量子位(公众号ID:QbitAI)授权转载,转载请联系出处。

图像分割,作为计算机视觉的基础,是图像理解的重要组成部分,也是图像处理的难点之一。

那么,如何优雅且体面的图像分割?

5行代码、分分钟实现的库——PixelLib,了解一下。

5行代码,快速实现图像分割,代码逐行详解,手把手教你处理图像

当然,如此好用的项目,开源是必须的。

为什么要用到图像分割?

虽然计算机视觉研究工作者,会经常接触图像分割的问题,但是我们还是需要对其做下“赘述”(方便初学者)。

我们都知道每个图像都是有一组像素值组成。简单来说,图像分割就是在像素级上,对图像进行分类的任务。

图像分割中使用的一些“独门秘技”,使它可以处理一些关键的计算机视觉任务。主要分为2类:

  • 语义分割:就是把图像中每个像素赋予一个类别标签,用不同的颜色来表示。
  • 实例分割:它不需要对每个像素进行标记,它只需要找到感兴趣物体的边缘轮廓就行。

它的身影也经常会出现在比较重要的场景中:

  • 无人驾驶汽车视觉系统,可以有效的理解道路场景。
  • 医疗图像分割,可以帮助医生进行诊断测试。
  • 卫星图像分析,等等。

所以,图像分割技术的应用还是非常重要的。

接下来,我们就直奔主题,开始了解一下PixelLib,这个神奇又好用的库。

快速安装PixelLib

PixelLib这个库可以非常简单的实现图像分割——5行代码就可以实现语义分割和实例分割。

老规矩,先介绍一下安装环境

安装最新版本的TensorFlow、Pillow、OpenCV-Python、scikit-image和PixelLib:

  1. pip3 install tensorflow  
  2. pip3 install pillow  
  3. pip3 install opencv-python  
  4. pip3 install scikit-image  
  5. pip3 install pixellib  

PixelLib实现语义分割

PixelLib在执行语义分割任务时,采用的是Deeplabv3+框架,以及在pascalvoc上预训练的Xception模型。

用在pascalvoc上预训练的Xception模型执行语义分割:

  1. import pixellib  
  2. from pixellib.semantic import semantic_segmentation  
  3. segment_image = semantic_segmentation()  
  4. segment_image.load_pascalvoc_model(“deeplabv3_xception_tf_dim_ordering_tf_kernels.h5”)  
  5. segment_image.segmentAsPascalvoc(“path_to_image”, output_image_name = “path_to_output_image”)  

让我们看一下每行代码:

  1. import pixellib  
  2. from pixellib.semantic import semantic_segmentation  
  3.  
  4. #created an instance of semantic segmentation class  
  5. segment_image = semantic_segmentation()  

用于执行语义分割的类,是从pixellib导入的,创建了一个类的实例。

  1. segment_image.load_pascalvoc_model(“deeplabv3_xception_tf_dim_ordering_tf_kernels.h5”)  

调用函数来加载在pascal voc上训练的xception模型(xception模型可以从文末传送门链接处下载)。

  1. segment_image.segmentAsPascalvoc(“path_to_image”, output_image_name = “path_to_output_image”)  

这是对图像进行分割的代码行,这个函数包含了两个参数:

  • path_to_image:图像被分割的路径。
  • path_to_output_image:保存输出图像的路径,图像将被保存在你当前的工作目录中。

接下来,上图,实战

图像文件命名为:sample1.jpg,如下图所示。

5行代码,快速实现图像分割,代码逐行详解,手把手教你处理图像

执行代码如下:

  1. import pixellib  
  2. from pixellib.semantic import semantic_segmentation  
  3. segment_image = semantic_segmentation()  
  4. segment_image.load_pascalvoc_model(“deeplabv3_xception_tf_dim_ordering_tf_kernels.h5”)  
  5. segment_image.segmentAsPascalvoc(“sample1.jpg”, output_image_name = “image_new.jpg”)  
5行代码,快速实现图像分割,代码逐行详解,手把手教你处理图像

可以看到,在执行代码后,保存的图像中,所有对象都被分割了。

也可以对代码稍作修改,获取一张带有目标对象分段重叠(segmentation overlay)的图像。

  1. segment_image.segmentAsPascalvoc(“sample1.jpg”, output_image_name = “image_new.jpg”, overlay = True)  

添加了一个额外的参数,并设置为True,就生成了带有分段叠加的图像。

5行代码,快速实现图像分割,代码逐行详解,手把手教你处理图像

可以通过修改下面的代码,来检查执行分割所需的推理时间。

  1. import pixellib  
  2. from pixellib.semantic import semantic_segmentation  
  3. import time  
  4. segment_image = semantic_segmentation()  
  5. segment_image.load_pascalvoc_model(“pascal.h5”)  
  6. start = time.time()  
  7. segment_image.segmentAsPascalvoc(“sample1.jpg”, output_image_name= “image_new.jpg”)  
  8. end = time.time()  
  9. print(f”Inference Time: {end-start:.2f}seconds”)  

输出如下:

  1. Inference Time: 8.19seconds  

可以看到,在图像上执行语义分割,只用了8.19秒。

这个xception模型是用pascalvoc数据集训练的,有20个常用对象类别。

对象及其相应的color map如下所示:

5行代码,快速实现图像分割,代码逐行详解,手把手教你处理图像

PixelLib实现实例分割

虽然语义分割的结果看起来还不错,但在图像分割的某些特定任务上,可能就不太理想。

在语义分割中,相同类别的对象被赋予相同的colormap,因此语义分割可能无法提供特别充分的图像信息。

于是,便诞生了实例分割——同一类别的对象被赋予不同的colormap。

PixelLib在执行实例分割时,基于的框架是Mask RCNN,代码如下:

  1. import pixellib  
  2. from pixellib.instance import instance_segmentation  
  3. segment_image = instance_segmentation()  
  4. segment_image.load_model(“mask_rcnn_coco.h5”)  
  5. segment_image.segmentImage(“path_to_image”, output_image_name = “output_image_path”)  

同样,我们先来拆解一下每行代码。

  1. import pixellib  
  2. from pixellib.instance import instance_segmentation  
  3. segment_image = instance_segmentation()  

导入了用于执行实例分割的类,创建了该类的一个实例。

  1. segment_image.load_model(“mask_rcnn_coco.h5”)  

这是加载 Mask RCNN 模型来执行实例分割的代码(Mask RCNN模型可以从文末传送门链接处下载)。

  1. segment_image.segmentImage(“path_to_image”, output_image_name = “output_image_path”) 

这是对图像进行实例分割的代码,它需要两个参数:

  • path_to_image:模型所要预测图像的路径。
  • output_image_name:保存分割结果的路径,将被保存在当前的工作目录中。

上图,实战第二弹!

图像文件命名为:sample2.jpg,如下图所示。

5行代码,快速实现图像分割,代码逐行详解,手把手教你处理图像

执行代码如下:

  1. import pixellib  
  2. from pixellib.instance import instance_segmentation  
  3. segment_image = instance_segmentation()  
  4. segment_image.load_model(“mask_rcnn_coco.h5”)  
  5. segment_image.segmentImage(“sample2.jpg”, output_image_name = “image_new.jpg”)  
5行代码,快速实现图像分割,代码逐行详解,手把手教你处理图像

上图便是保存到目录的图片,现在可以看到语义分割和实例分割之间的明显区别——在实例分割中,同一类别的所有对象,都被赋予了不同的colormap。

若是想用边界框(bounding box)来实现分割,可以对代码稍作修改:

  1. segment_image.segmentImage(“sample2.jpg”, output_image_name = “image_new.jpg”, show_bboxes = True)  

这样,就可以得到一个包含分割蒙版和边界框的保存图像。

5行代码,快速实现图像分割,代码逐行详解,手把手教你处理图像

同样的,也可以通过代码查询实例分割的推理时间:

  1. import pixellib  
  2. from pixellib.instance import instance_segmentation  
  3. import time  
  4. segment_image = instance_segmentation()  
  5. segment_image.load_model(“mask_rcnn_coco.h5”)  
  6. start = time.time()  
  7. segment_image.segmentImage(“former.jpg”, output_image_name= “image_new.jpg”)  
  8. end = time.time()  
  9. print(f”Inference Time: {end-start:.2f}seconds”)  

输出结果如下:

  1. Inference Time: 12.55 seconds  

可以看到,在图像上执行实例分割,需要12.55秒的时间。

最后,奉上项目、模型下载地址,快去试试吧~

传送门

PixelLib项目地址:
https://github.com/ayoolaolafenwa/PixelLib

xception模型下载地址:
https://github.com/bonlime/keras-deeplab-v3-plus/releases/download/1.1/deeplabv3_xception_tf_dim_ordering_tf_kernels.h5

Mask RCNN模型下载地址:
https://github.com/matterport/Mask_RCNN/releases/download/v2.0/mask_rcnn_coco.h5

代码 机器学习 图像
上一篇:用TFserving部署深度学习模型 下一篇:机器学习算法集锦:从贝叶斯到深度学习及各自优缺点
评论
取消
暂无评论,快去成为第一个评论的人吧

更多资讯推荐

可再生能源与机器学习“双重加持”,谷歌成功实现风力预测

从传统角度看,电力电场的发电能力普遍较弱,因为我们至今很难预测无形无相的风,会在新一天中表现出怎样的活动趋势。

佚名 ·  15h前
明确解释:机器学习与统计建模有何不同

这篇文章提出了一个非常重要的区别,我们应该将其理解为数据科学领域的活跃部分。 上面的维恩图最初是由SAS Institute发布的,但是它们的图显示统计和机器学习之间没有重叠,据我所知,这是一个疏忽。

闻数起舞 ·  21h前
不用任何数学方法,如何计算圆面积

借鉴统计学习和机器学习的核心原理,我们可以使用蒙特卡罗模拟和多项式/二次回归来创建基于计算的方法,以找到圆的面积公式。

机器之心 ·  1天前
2020年十大人工智能趋势

人工智能在工作场所中崛起以支持和维持数字化劳动力的趋势是2020年的明显趋势。人工智能,机器学习,神经网络或其他任何花哨的术语行业都应运而生,它被定义为复杂的计算机技术,被广泛用于理解和改善业务和客户体验。

闻数起舞 ·  1天前
机器学习变革物流运输和交通出行

云和机器学习的融合催生了自动驾驶技术尤其是人们出行方式的广泛创新,正在改变整个行业的游戏规则。根据普华永道(PWC)的数据,68%的物流运输企业负责人认为,未来5年,提供物流运输服务的核心技术的改变将颠覆整个行业。

AWS大中华区云服务产品管理总经理顾凡 ·  3天前
轻松构建 PyTorch 生成对抗网络(GAN)

生成对抗网络(GAN)是一种生成式机器学习模型,它被广泛应用于广告、游戏、娱乐、媒体、制药等行业,可以用来创造虚构的人物、场景,模拟人脸老化,图像风格变换,以及产生化学分子式等等。

佚名 ·  2020-05-28 10:45:36
新AI让教师能够快速开发智能辅导系统

通过使用一种采用人工智能的新方法,教师可以通过演示解决某个主题中的问题的几种方法来教计算机……

佚名 ·  2020-05-27 16:48:01
终结重复工作!教你30分钟创建自己的深度学习机器

建立一个深度学习环境是一件很重要的事情。本文讲述使用深度学习 CommunityAMI、TMUX和 Tunneling在EC2为Jupyter Notebooks创建一个新的深度学习服务器。

读芯术 ·  2020-05-27 10:36:43
Copyright©2005-2020 51CTO.COM 版权所有 未经许可 请勿转载