和AI去码一样神奇?AI上色是黑科技还是逗你玩

作者: Aimo 2020-05-28 14:11:41

 在图片处理领域这块,AI 刷的存在感越来越多。早前笔者就介绍过 AI 无损放大图片、AI 去除马赛克、AI 自动给线稿上色之类的玩法,现在,又有人给笔者推荐了一个 AI 黑科技——黑白照片一键变彩色。

AI 在图片处理领域频频刷存在感,就算是马赛克,AI 技术也能修复成高清,现在 AI 还能上色了!

是的,AI 可以让黑白照自动变成彩色照片了!我们知道黑白照片上色的难点,在于它其中并没有包含任何色彩信息,需要靠人来辨认物体的什么,然后靠想象、脑补才能猜出黑白照应有的颜色,靠人工填上去。而现在,AI 也可以做到这一点?据介绍,这个“Colourise.sg”网站,利用了机器学习和神经网络算法,利用数十万张的照片建立了着色模型,我们一起来看看它到底靠不靠谱。

Colourise.sg:https://colourise.sg/

Colourise.sg 是一个来自于新加坡的网站,在国内连接速度并不算快,有时候会出现连接问题。

Colourise.sg 页面

Colourise.sg 的使用很简单,开启网页后,滚动到页面下方的交互框,就可以上传图片了。使用前,可以需要先做一个人机验证,判断你是不是真人,有时候这个验证码会刷不出来,多刷几次就可以了。

在这个框框上传需要上色的图片

Colourise.sg 一次只能为一张黑白照片上色,上传黑白照片后,Colourise.sg 很快就会给出结果。Colourise.sg 给出的结果还是很好玩的,提供了原图和上色后图片的对比图,而且用户可以拖动原图和上色图片的分界线,作更详细的比较。

Colourise.sg 的 AI 上色效果如何?我们来看看几组照片。

首先是一张二战历史照片。这张照片原本就是黑白照,可以看到 Colourise.sg 的上色效果还是比较自然的,但一些细节也有翻车的情况,总体来说比较好评。

我们再用现代的彩色照片来测试 Colourise.sg 的功力。这里先利用 PhotoShop 的去色程序,将一张彩色照片去色,然后再将它上传到 Colourise.sg 用 AI 上色,对比原先的彩色照片,看看 Colourise.sg 的上色到底是不是真的那么神奇。

首先来看两张风景照。

去色版

原图

Colourise.sg 上色版

去色版

原图

Colourise.sg 上色版

可以看到,Colourise.sg 总体来说还是比较自然的。它能够比较好地判断天空、海水、沙滩、绿植等要素,并给出了较为正确的色彩。特别是海边的这张照片,上色效果已经接近以假乱真,和原片只有风格上的差异而已。不过 Colourise.sg 对于一些细节的把控仍是有问题的,例如无法分辨枯叶和绿叶,只能笼统地将植物都填上绿色,对比原图色彩单调了不少。

再来看一张室内照。

去色版

原图

Colourise.sg 上色版

这张照片 Colourise.sg 的处理效果是不太理想的。和原图相比,Colourise.sg 上色的版本丢失了很多色彩,而且反差不强烈。对于室内布置的人造物,Colourise.sg 似乎没有太多的上色方案,毕竟和自然物体相比,人造物体的颜色有更多的可能性,Colourise.sg 的上色趋于保守也是可以理解的。但 Colourise.sg 竟然也没正确还原盆栽绿植的颜色,这就有点令人失望了。

最后我们来看一张食物的照片。

去色版

原图

Colourise.sg 上色版

这简直就是翻车现场。Colourise.sg 基本没有起到上色的作用,换言之 Colourise.sg 根本就不知道这些食物、餐具应该的什么颜色。食物、餐具也是人造物,看来 Colourise.sg 对没有固定颜色搭配的物品,上色的确不擅长。

总结

可见,Colourise.sg 的能力还是比较局限的。对于自然景观、人脸皮肤等颜色比较固定的对象,Colourise.sg 能够正确上色;而对于家具、食物、餐具等颜色千万种的事物,Colourise.sg 就难以应付了。当然,随着数据库的进一步充实,AI 是可以继续进步的,期待今后有更好的 AI 上色方案吧。

AI 黑科技 人工智能
上一篇:AI与IoT:两种强大的技术将如何改变未来商业模式 下一篇:BAIR最新RL算法超越谷歌Dreamer,性能提升2.8倍
评论
取消
暂无评论,快去成为第一个评论的人吧

更多资讯推荐

培养产业高端复合型AI人才 AICA首席AI架构师培养计划第五期开启

10月15日,深度学习技术及应用国家工程实验室与百度联合发起创办的AICA首席AI架构师培养计划第五期在京迎来开学典礼。

佚名 ·  1天前
自动驾驶存在不确定性的运动规划:基于强化学习的方法

存在不确定性的运动规划是开发自动驾驶车的主要挑战之一。本文专注于有限的视野、遮挡和传感距离限制导致的感知不确定性。

自动驾驶的挑战和发展 ·  1天前
中英文超大AI模型世界纪录产生,大模型竞赛新阶段来了

英伟达与微软联合发布了5300亿参数的“威震天-图灵”(Megatron-Turing),成为迄今为止全球最大AI单体模型。

边策 ·  1天前
AI即将拥有自我意识?Facebook推「Ego4D 」开启元宇宙大门

今年11月,Facebook将开源让AI拥有以第一人称视角与世界进行交互的能力的Ego4D(Egocentric 4D Perception)计划。

佚名 ·  1天前
AI技术再立功毕加索一副名画下隐藏的画作重见天日

据外媒报道,在成名之前,巴勃罗·毕加索并不总是有足够的资金来购买绘画材料,因此,像很多艺术家一样,他在现有的画布上创作新的作品,从而掩盖了早期的图像。目前研究人员利用AI对这幅隐藏画作进行了重建。

贾桂鹏 ·  1天前
2022年的AIOps趋势预测

将人工智能纳入IT活动可以使IT团队能够在复杂的IT条件下执行更复杂的任务。人工智能与IT运营的这种整合产生了AIOps这个术语,它利用大数据、数据分析和人工智能的能力进行IT运营管理。

arti ·  1天前
元学习热度不再!ICLR 2022投稿趋势:强化学习榜首,深度学习第二

ICLR 2022 论文投稿情况都是公开的,所以有研究者收集统计了ICLR 2022的3400篇论文,排出了前50个热门研究话题,发现深度学习、强化学习仍旧霸榜前两名,元学习的热度下降很多!

佚名 ·  1天前
当世界模型被用于sim2real:机器人通过视觉想象和交互尝试来学习

当机器人被置于一个新环境时,它必须能够利用其先前的知识来思考环境可能提供的潜在有用行为。

佚名 ·  1天前
Copyright©2005-2021 51CTO.COM 版权所有 未经许可 请勿转载