机器学习将给电力行业带来巨大变革

作者: 蒙光伟 2020-06-04 10:56:29

随着能源格局即将发生巨大变化,现在是结合机器学习和电网的优秀时机。

机器学习将给电力行业带来巨大变革

比尔·盖茨(Bill Gates)在2017年表示:“如果我今天刚开始并寻找同一种对世界产生重大影响的机会,我将考虑三个领域。一是人工智能;第二是能源;第三是生物科学”。

毫无疑问,能源的未来在于可持续、可靠和“智能”的发电和配电系统,以及主动而不是被动的网络。电力公司拥有与网络故障、网络模型,来自发电机的运行信息和资产数据库相关的大量且不断增长的数据。

数据具有预测网络故障和协助维护的巨大潜力。将来,通过机器学习,添加网络故障记录将是解决方案的一部分,而不是问题。通过添加更多记录,可以为模型提供更多分析数据,从而可以进行更准确,更准确的预测。

例如,机器学习算法可以访问具有类型、位置、使用期限或使用期限配置文件和资产状况、电路和负载数据以及现有故障数据的数据库,并将故障的概率和成本返回为以及可能发生的时间,如以小时、天、周或月为单位。

机器学习有可能被用作经济的建模工具,通过成本效益分析评估与使用电网加固解决方案有关的战略发展和决策。将来,我们不仅将对故障做出反应,还将使用通过分析技术经济数据来预测故障的模型来预测和避免故障。因此,通过机器学习,电力行业在开发主动系统而非被动系统方面迈出了一步。

在后疫情时代,最紧迫的挑战是气候变化,以英国为例,他们承诺到2050年过渡到零净经济,电力网络将发展到更加可再生的基础。我们已经可以看到,随着清洁能源的发电在2020年的前三个月英国提供了40%的电力,可再生能源的地位日益增长,这是可再生能源首次超过化石燃料。

分析人士认为,可再生能源和可持续能源产业应像上次经济衰退那样发挥更大的作用,并推动绿色经济复苏。尽管并非没有挑战,但这是可能的,并且机器学习可以解决某些问题。

即使使用最复杂的天气预报,也很难准确预测风能和太阳能等可再生能源发电的波动。此外,内部安装的设备(例如光伏和电池)的小型分布式发电和存储(全球范围为5000万个)增加了系统的不确定性。


机器学习和人工智能可能会解决这些问题,因为这些算法可用于更准确地预测需求,以及可再生能源发电的输出,无论短期还是长期都使用预测。

现在,已开始使用已安装的储能装置(包括电池)来最大程度地减少可再生能源发电的不确定性,并帮助实现可再生能源需求的更高百分比。但是,该解决方案可能存在可靠性问题和局限性,例如电池退化和意外故障,需要不断监控和维护。

使用机器学习作为工具来监视和预测储能系统中的潜在故障可能会导致系统更加可靠和高效,并且通过使用AI和机器学习算法,电力需求和可再生能源发电将更加可预测,储能更加可靠并高效。

科学界已经在研究电力网络中“智能”能源和机器学习的美好前景。关于能源需求的预测,太阳能发电的预测,甚至对可以从城市环境中的食物垃圾中收集的能量的精确预测,已经有很多说法。考虑到其他领域对AI和机器学习的深入了解和广泛使用,随着我们过渡到零净经济和社会,电网领域的可能性令人兴奋。

机器学习 电力行业 能源
上一篇:疫情期间,如何借AI之力持续提升客户忠诚度? 下一篇:用PyTorch实现一个简单的分类器
评论
取消
暂无评论,快去成为第一个评论的人吧

更多资讯推荐

传统健身房也要被人工智能淘汰了吗?

和人们的传统健身观念不同,机器学习和人工智能早已成为现代健身项目的重要组成部分。

周舟 ·  1天前
机器学习带你横扫乐坛,你就是下一个方文山

我太爱北极猴子乐队了,但他们已经很久没有发行新单曲了。久久欠缺精神食粮的我某天晚上突然灵机一动,我可以自给自足呀!于是我写了个简单的代码,用Keras和TensorFlow训练了一个文本生成模型,写出一首全新的北极猴子的歌。

读芯术 ·  2天前
令人着迷的无梯度神经网络优化方法

梯度下降是机器学习中最重要的思想之一:给定一些代价函数以使其最小化,该算法迭代地采取最大下降斜率的步骤,理论上在经过足够的迭代次数后才达到最小值。柯西(Cauchy)于1847年首次发现,在1944年针对非线性优化问题在Haskell Curry上得到扩展,梯度下降已用于从线性回归到深度神经网络的各种算法。

AI火箭营 ·  3天前
机器学习项目必备:端到端机器学习项目开发过程的任务表

任务列表能指导开发人员完成下一步,促使你检查每个任务是否已成功执行。有时候,我们很难找到出发点,任务表也可帮助开发人员从正确的来源中获取正确的信息(数据),以便建立关系并揭示相关的见解。

读芯术 ·  3天前
在理解通用逼近定理之前,你都不会理解神经网络

从字面上看,通用近似定理是神经网络起作用的理论基础。然而,最重要的是,该定理令人惊讶地解释了为什么神经网络似乎表现得如此聪明。 理解它是发展对神经网络的深刻理解的关键一步。

闻数起舞 ·  3天前
机器学习工程师正在失业,但学习依旧是唯一的出路

人工智能(AI),机器学习(ML)和数据科学(DS)几个领域最先出现收缩是合情合理的,因为对大多数企业来说这些都是奢侈品。

大数据文摘 ·  3天前
MIT开发出造梦机器,「美梦孵化器」为你定制真人版盗梦空间

美国麻省理工(MIT)的一组天才研制出了一种实验装置,能让佩戴者在睡觉时触发特定的梦境体验。

佚名 ·  2020-07-31 14:59:20
为什么说机器学习是预防欺诈的优秀工具?

随着现代技术的发展和完善,生活变得越来越舒适。虽然以前人们认为同时进行复杂的操作是不可能的,而如今计算机使这一任务变得很容易了。

Giorgi ·  2020-07-29 08:34:30
Copyright©2005-2020 51CTO.COM 版权所有 未经许可 请勿转载