用PyTorch实现一个简单的分类器

作者: 佚名 2020-06-04 12:55:44

 回想了一下自己关于 pytorch 的学习路线,一开始找的各种资料,写下来都能跑,但是却没有给自己体会到学习的过程。有的教程一上来就是写一个 cnn,虽然其实内容很简单,但是直接上手容易让人找不到重点,学的云里雾里。有的教程又浅尝辄止,师傅领到了门槛跟前,总感觉自己还没有进门,教程就结束了。

所以我总结了一下自己当初学习的路线,准备继续深入巩固自己的 pytorch 基础;另一方面,也想从头整理一个教程,从没有接触过 pytorch 开始,到完成一些最新论文里面的工作。以自己的学习笔记整理为主线,大家可以针对参考。

第一篇笔记,我们先完成一个简单的分类器。主要流程分为以下三个部分:

1,自定义生成一个训练集,具体为在二维平面上的一些点,分为两类;

2,构建一个浅层神经网络,实现对特征的拟合,主要是明白在 pytorch 中网络结构如何搭建;

3,完成训练和测试部分的工作,熟悉 pytorch 如何对网络进行训练和测试。

1. 自定义生成数据集

  1. n_data = torch.ones(100, 2)  
  2. x0 = torch.normal(2*n_data, 1)  
  3. y0 = torch.zeros(100)  
  4. x1 = torch.normal(-2*n_data, 1)  
  5. y1 = torch.ones(100)  
  6. x = torch.cat((x0, x1)).type(torch.FloatTensor)  
  7. y = torch.cat((y0, y1)).type(torch.LongTensor) 

这篇文章我们先考虑在一个自己定义的简单数据集上实现分类,这样子可以最简单的了解一个神经网络的模型,如何用 pytorch 搭建起来。

这个代码对 numpy 比较熟悉的同学应该也可以猜出来它的内容,只是在 numpy 中是一个 numpy array,在 pytorch 中是一个 tensor。这里我简单的介绍一下这几行代码的作用,给有需要的同学捋顺思路。

首先 n_data 是基准数据,用来生成其它数据,内容为一个 100 行 2 列 的 tensor,其中的值都为 1。x0 是一类数据的坐标值,通过这个 n_data 来生成。

具体的生成的办法是用 torch.normal() 这个函数,第一个参数为 mean,第二个参数是 std。所以返回的结果 x0 是一个和 n_data 形状一样,但是其中的数据在以 2 为平均值,以 1 为标准差的正态分布中随机选取的。y0 则是一个 100 维的 tensor,其中的值都为 0。

我们可以这样理解 x0 和 y0,x0 的形状是 100 行 2 列的 tensor,其中的值以 2 为中心进行随机分布,符合正态分布,而这些点的标签我们设置为 y0,也就是 0。与此相反,x1 对应的中心为 -2,且标签为 y1,也就是每个点的标签都为 1。

最后生成的 x 和 y,就是将所有的数据合并起来,x0 和 x1 合并起来作为数据,y0 和 y1 合并起来作为标签。

2. 构建一个浅层神经网络

  1. class Net(torch.nn.Module):  
  2.     def __init__(self, n_feature, n_hidden, n_output):  
  3.         super(Net, self).__init__()  
  4.         self.n_hidden = torch.nn.Linear(n_feature, n_hidden)  
  5.         self.out = torch.nn.Linear(n_hidden, n_output)  
  6.     def forward(self, x_layer):  
  7.         x_layer = torch.relu(self.n_hidden(x_layer))  
  8.         x_layer = self.out(x_layer) 
  9.          x_layer = torch.nn.functional.softmax(x_layer)  
  10.         return x_layer  
  11. net = Net(n_feature=2n_hidden=10n_output=2 
  12. # print(net)  
  13. optimizer = torch.optim.SGD(net.parameters(), lr=0.02)  
  14. loss_func = torch.nn.CrossEntropyLoss() 

上面的 Net() 类就是如何构建一个神经网络的步骤。我们如果是第一次用 pytorch 写一个神经网络,那么这个就是一个足够简单的例子了。其中的内容由两部分组成,分别是 __init__() 函数和 forward() 函数。

大家可以简单的这样子理解:__init__() 函数中,是对网络结构的定义,都有哪些层,每层又有什么功能。例如这个函数中,self.n_hidden 就是定义了一个线性拟合函数,也就是全连接层,在此处相当于一个向隐藏层的映射。输入是 n_feature,输出是隐藏层的神经元个数 n_hidden。然后 self.out 也一样是一个全连接层,输入是刚才的隐藏层的神经元个数 n_hidden,输出是最后的输出结果 n_output。

接着就是 forward() 函数,在这里相当于定义我们神经网络的执行顺序。所以这里可以看到,先对输入的 x_layer 执行上面的隐藏层函数,也就是第一个全连接 self.n_hidden(),然后对输出再执行激活函数 relu。接下来如法炮制,经过一个输出层 self.out(),得到最后的输出。然后将输出 x_layer 返回。

optimizer 就是这里定义的优化方式,其中的 lr 是学习率的参数。然后损失函数我们选择交叉熵损失函数,也就是上面的最后一行代码。优化算法和损失函数,可以在 pytorch 中直接选择不同的 api 接口,形式上直接参考上面这种固定形式便可。

3. 完成训练和测试

  1. for i in range(100):  
  2.     out = net(x)  
  3.     # print(out.shape, y.shape)  
  4.     loss = loss_func(out, y)  
  5.     optimizer.zero_grad()  
  6.     loss.backward()  
  7.     optimizer.step() 

接下来我们看一下如何进行训练的过程。net() 是我们对 Net() 类实例化出来的一个对象,所以利用 net() 可以直接完成模型的运行,out 就是模型预测出来的结果,loss 则是和真实值按照交叉熵损失函数计算出来的误差。

下面的三行代码是一个标准形式,表示了如何进行梯度的反向传播。到此其实我们的训练已经完成了,这个网络现在可以直接拿来对测试的数据集进行预测分类了。

  1. # train result  
  2. train_result = net(x)  
  3. # print(train_result.shape)  
  4. train_predict = torch.max(train_result, 1)[1]  
  5. plt.scatter(x.data.numpy()[:, 0], x.data.numpy()[:, 1], c=train_predict.data.numpy(), s=100lw=0cmap='RdYlGn' 
  6. plt.show() 

为了让大家更好的理解这个模型的作用,这里我们来做一些可视化的工作,看看一个模型的学习效果。通过 python 很常见的一个数据可视化的库 matplotlib 可以实现这个目标,具体的 matplotlib 的用法就不介绍了。

这里的作用是显示出来训练好的模型对训练集的分类效果,可以理解为训练误差。

  1. # test  
  2. t_data = torch.zeros(100, 2)  
  3. test_data = torch.normal(t_data, 5)  
  4. test_result = net(test_data)  
  5. prediction = torch.max(test_result, 1)[1]  
  6. plt.scatter(test_data[:, 0], test_data[:, 1], s=100c=prediction.data.numpy(), lw=0cmap='RdYlGn' 
  7. plt.show() 

然后我们以 0 为 mean,随机生成一些数据,来看看模型会怎么去分类这些数据点。

虽然没有画出来那条训练好的分割线,但是我们也可以看到模型学习了一个分割的界面,来将数据划分为两类。

PyTorch 分类器 神经网络
上一篇:机器学习将给电力行业带来巨大变革 下一篇:从AI测温到安防机器人 智能安防会是新的“守门神”吗?
评论
取消
暂无评论,快去成为第一个评论的人吧

更多资讯推荐

PyTorch官方教程书限时免费!500页内容带你上手最流行框架

去年 11 月,PyTorch 官方发布权威 PyTorch 教程书籍《Deep Learning with PyTorch》,现在经过更新迭代后,PyTorch 终于发布了该书的免费版本。还不快来学?

魔王 ·  3天前
想做项目但毫无头绪?试试这7个有趣的开源机器学习项目

做项目是学习机器学习的必经之路,而有趣又有价值的项目往往是可遇而不可求的。你是否还在为找不到合适的项目而发愁?

读芯术 ·  4天前
可视化解释11种基本神经网络架构

随着深度学习的飞速发展,已经创建了完整的神经网络体系结构主机,以解决各种各样的任务和问题。 尽管有无数的神经网络架构,但对于任何深度学习工程师来说,这里有11种必不可少的知识,它们分为四大类:标准网络,递归网络,卷积网络和自动编码器。

闻数起舞 ·  2020-07-01 09:08:55
PyTorch称霸顶会:CVPR论文占比是TensorFlow 4 倍

在开源框架领域,PyTorch 与 TensorFlow 之争一直存在,研究人员在写论文时也会有不同的偏向。

佚名 ·  2020-06-28 10:16:53
神经网络原来这么简单,机器学习入门贴送给你 | 干货

你想学机器学习吗?这里有一个入门贴适合你。什么神经网络、随机森林、计算机视觉通通一网打尽。

白交 ·  2020-06-23 11:49:08
高性能PyTorch是如何炼成的?过来人吐血整理的10条避坑指南

高性能 PyTorch 的训练管道是什么样的?是产生最高准确率的模型?是最快的运行速度?是易于理解和扩展?还是容易并行化?答案是,包括以上提到的所有。

机器之心 ·  2020-06-23 08:11:40
12个写论文必备的神经网络可视化工具

本文介绍了了12个将神经网络画地更好看的工具。

佚名 ·  2020-06-15 17:40:32
为什么神经网络如此强大?

众所周知,神经网络非常强大,可以将其用于几乎任何统计学习问题,而且效果很好。 但是您是否考虑过为什么会这样? 为什么在大多数情况下此方法比许多其他算法更强大?

闻数起舞 ·  2020-05-29 17:21:33
Copyright©2005-2020 51CTO.COM 版权所有 未经许可 请勿转载