机器学习在网络管理中有什么应用前景?

作者: 李雪薇 2020-10-23 16:23:54

网络正朝着自动化和智能化的趋势发展,企业对人工智能(AI)和机器学习(ML)的需求日益增长,因为它们能够以程序化的方式识别网络问题,并对复杂的问题进行即时诊断。

将AI和ML应用到网络管理中,可以实现对多个管理平台的输入进行整合,以进行集中分析。与其让IT人员手动梳理来自不同设备和应用的报告,不如让机器学习对问题进行快速、自动化的诊断。


Gartner高级总监兼分析师Josh Chessman阐述道,“我拥有很多监控工具,它们都告诉我某些地方出了问题,却没有告诉我问题出在哪里。机器学习最大的优势在于它可以具体识别出,从7种不同的工具中处理的26个网络问题。”

分析师表示,企业对此类监控工具的应用还处于初期阶段。一个症结在于,AI和ML到底意味着什么?那些将AI想象为能够毫不费力地识别入侵者,并分析和优化流量的人将会失望。

IDC研究总监Mark Leary认为,“使用AI一词来描述新型网络管理工具的实际情况,是一种夸大其词的说法。当供应商在谈论他们的AI/ML功能时,如果得到一个诚实的解读,他们正在谈论机器学习,而不是人工智能。”

这两个术语之间并没有严格的定义划分。从广义上讲,它们都描述了相同的概念——可以从多个来源读取数据并相应地调整其输出的算法。

据专家称,与用于识别企业网络中特定问题根源的系统相比,人工智能更准确地应用于该想法的可靠表达。

德勤战略业务负责人Jagjeet Gill表示,“我们可能过度解读了AI这个术语,因为其中一些东西,比如预测性维护,已经在这个领域有一段时间了。”

另一个症结是交叉兼容性。

目前,市场上的大部分产品都是以供应商在其现有产品中添加新功能的形式出现。例如,许多供应商都在添加AIops,因为它有点像一个流行词。

还有一些供应商能够利用机器学习,让企业应用人工智能运维,专注于IT事件管理,例如,Moogsoft和BigPanda。但更常见的是将ML功能与特定厂商的产品捆绑在一起。

不管这项技术需要克服哪些障碍,ML技术很可能会让许多IT专业人士的工作变得轻松简单。拥有这些类型的工具和解决方案是一件好事,它将帮助你随时了解网络中发生的一切。

虽然这可能是向全网络自动化方向迈出的重要一步,这也可能导致IT人员的工作岗位流失。

更有可能的是,机器学习将帮助IT人员腾出更多精力从事更多创收活动,而不是救火。完全自动化还需要走很长的路。

机器学习 网络管理 自动化 智能化
上一篇:希望之业:AI正重新定义室内农业 下一篇:金钱能让人更快乐吗?手把手教你用机器学习找到答案
评论
取消
暂无评论,快去成为第一个评论的人吧

更多资讯推荐

第四范式NeurIPS 2020:知识图谱嵌入的自动化

前不久,来自第四范式的资深研究员姚权铭博士和大家分享了其参与并被 NeurIPS 2020 接收的论文《Interstellar: Searching Recurrent Architecture for Knowledge Graph Embedding》。

机器之心 ·  1天前
AI的偏见:机器就是绝对理性的么?

人工智能已经遍布我们的日常生活。从YouTube的首页推荐到生产药物,它无所不在,它对我们生活的影响超出我们的想象。但人工智能一定公平吗?不,绝对不是。

读芯术 ·  3天前
机器学习平台在Kubernetes上的实践

本文回顾总结近一段时间网易云音乐机器学习平台(GoblinLab)在容器化实践的一些尝试。截止今日,音乐机器学习平台(GoblinLab)在容器化方面的尝试,已开展了一段时间,并且已经有了阶段性的成果。

王军正 ·  4天前
盘点:2020年最酷的12家机器学习初创公司

我们筛选了12家初创公司,有的已经成立了几年时间,有的刚刚起步,但他们都在致力于解决与机器学习相关的各种挑战。

CRN ·  4天前
微分方程VS机器学习,实例讲解二者异同

微分方程与机器学习作为 AI 领域建模的两种方法,各自有什么优势?

佚名 ·  2020-11-25 14:40:48
用新的机器学习思考方式 来辨别自然异常与人为误导

某些对抗性事件很可能是人为设计而来。我们必须知晓其中的手法与工件是什么,这样才能真正理解深度神经网络的可靠性。

佚名 ·  2020-11-24 19:31:41
面向未来系统设计的机器学习

Elias Fallon是行业领先的电子设计自动化技术提供商Cadence Design Systems公司的工程主管。他带领其定制IC研发团队以及电子设计自动化(EDA)产品团队进行项目开发。

Elias Fallon ·  2020-11-24 10:21:14
2021年码农应该了解的所有机器学习算法

随着我对机器学习的了解的增加,机器学习算法的数量也在增加! 本文将介绍数据科学界常用的机器学习算法。

闻数起舞 ·  2020-11-23 09:26:22
Copyright©2005-2020 51CTO.COM 版权所有 未经许可 请勿转载