面部识别:攻击类型和反欺骗技术

作者: 人工智能遇见磐创 2020-11-08 16:00:33

多亏了计算机科学和电子技术的迅速发展,如今,就市场份额而言,面部识别正成为仅次于指纹的全球第二大生物特征认证方法。

每天,越来越多的制造商在他们的产品中加入面部识别功能,例如苹果公司采用了人脸识别技术,银行则采用eKYC解决方案进行了入职流程。

人脸识别研究的主要目的是提高验证和识别任务的性能,与此相反,过去对人脸识别系统的安全漏洞的研究较少,直到最近几年,人们才开始关注不同类型的人脸识别攻击,包括检测一个生物特征是来自一个活着的人还是一张照片。

面部识别系统上使用的两种攻击

如上图所示,存在七个可以作为攻击目标的模块和点,它们分为两种类型:演示攻击和间接攻击。

演示攻击

演示攻击在传感器级别(1)进行,而无需访问系统内部。

演示攻击与纯粹的生物识别漏洞有关。在这些攻击中,入侵者使用某种伪像,例如,照片,面具,合成指纹或打印的虹膜图像,或试图模仿真实用户的行为(例如步态,签名)欺诈地访问生物识别系统。

由于“生物特征不是秘密”,攻击者意识到这种现实,即暴露了大量生物特征数据,显示了人的脸部,眼睛,声音和行为,因此他们利用这些信息资源来尝试利用以下示例欺骗人脸识别系统。

  • 攻击者使用要被冒充的用户照片。
  • 他们使用要模仿的用户视频。
  • 黑客可以构建和使用被攻击人脸的3D模型,例如,超逼真面具

我们使用反欺骗技术来防止这些攻击。

间接攻击

可以在数据库,匹配的通信通道等上执行间接攻击(2-7)。在这种类型的攻击中,攻击者需要访问系统内部。

可以通过与“经典”网络安全有关的技术(而不是与生物识别技术)相关的技术来防止间接攻击,因此在本文中我们将不再讨论。

进攻方式

如果不实施演示攻击检测,大多数最新的面部生物特征识别系统都容易受到简单攻击。

通常,可以通过向相机呈现目标人员的照片,视频或3D蒙版来欺骗面部识别系统。或使用化妆或整形手术。但是,由于高分辨率数码相机曝光率高、成本低,使用照片和视频是最常见的攻击类型。

  • 照片攻击:照片攻击包括将被攻击身份的照片显示在面部识别系统的传感器上。
  • 视频攻击:攻击者可以在任何复制视频的设备中播放合法用户的视频,然后将其呈现给传感器/摄像机。
  • 3D蒙版攻击:在这种类型的攻击中,攻击者构建面部的3D重建并将其呈现给传感器/相机。
  • 其他攻击:化妆,手术

反欺骗技术

因为大多数面部识别系统很容易受到欺骗方的攻击。因此,为了在真实场景中设计一个安全的人脸识别系统,从系统的初始规划开始,防欺骗技术应该是首要任务。

由于面部识别系统试图区分真实用户,因此无需确定提供给传感器的生物特征样本是真实的还是假的。我们可以通过以下四种不同方式来实现它们。

传感器

我们使用传感器来检测信号中的实时特征。

专用硬件

借助专用硬件(例如3D摄像机)来检测生命迹象,但并非总是可以部署。

挑战响应法

使用挑战响应法,其中可以通过请求用户以特定方式与系统进行交互来检测演示攻击。

  • 微笑
  • 悲伤或幸福的面部表情
  • 头部动作

算法

使用以下识别算法本质上具有抵御攻击的能力。

镜面特征投影:首先,通过刻画真实图像对应的镜面特征空间,在此基础上学习真实数据和虚假数据的投影。其次,根据真实投影训练SVM模型,然后使用3D掩模投影和打印照片投影作为检测模拟的反欺骗模型。

深度特征融合:通过深入研究人脸图像颜色特征信息对人脸检测的重要性,利用深度卷积神经网络ResNet和SENet构建了深度特征融合网络结构,有效地训练相关的人脸防欺骗数据。

图像质量评估:该方法基于图像质量度量的组合。该解决方案将原始图像与经过处理的图像进行比较。

深度学习:此方法基于多输入架构,该架构结合了预训练的卷积神经网络模型和本地二进制模式描述符。

如何实施?

我们可以使用反欺骗技术构建演示攻击检测系统(PAD),并将其与面部识别系统集成。

使用这种方法,防欺骗系统首先做出决定,只有确定样本来自有生命的人之后,面部识别系统才会对其进行处理。

人脸识别 技术 安全
上一篇:数据科学面试中应了解的十种机器学习概念 下一篇:60岁以上网民增长迅速 善用语音搜索AI学习工具
评论
取消
暂无评论,快去成为第一个评论的人吧

更多资讯推荐

5G商用不断加快,对于无人机来说意味着什么?

今年以来,我国5G发展按下快进键,各地5G建设纷纷完成既定目标,推动了5G商用步伐的不断加快。根据工信部最新数据显示,截至10月份,我国5G基站已建成超60万座,5G用户达到1亿余人次,5G网络覆盖基本取得不错成效。

佚名 ·  1天前
什么是边缘人工智能和边缘计算?

边缘人工智能(Edge AI)是人工智能领域引人注目的新领域之一,其目的是让用户运行人工智能流程而不必担心隐私或数据传输较慢带来的影响。边缘人工智能可以使人工智能技术得到更广泛的应用,使智能设备在无需接入云平台的情况下对输入做出快速反应。

李睿 ·  1天前
第四范式NeurIPS 2020:知识图谱嵌入的自动化

前不久,来自第四范式的资深研究员姚权铭博士和大家分享了其参与并被 NeurIPS 2020 接收的论文《Interstellar: Searching Recurrent Architecture for Knowledge Graph Embedding》。

机器之心 ·  1天前
人脸识别“热”中的冷思考:道德伦理问题值得深思

科技日报11月27日报道,人脸识别系统已经给我们的城市带来诸多方便。然而,在许多国家,对人脸识别的抵抗声也在不断高涨。研究人员、公民自由倡导者和法律学者都受到人脸识别技术兴起的困扰。

澎湃新闻 ·  4天前
3D视觉CV界的终极体现形式,计算机如何「看」这个三维世界

现如今,随处可见 3D 视觉技术带来的便利,工业机器人、工件识别与定位、3D 成像技术、产品虚拟设计、智能制造、自动驾驶、SLAM、无人机、3D 重建、人脸识别等等,都涉及到 3D 视觉相关内容。

佚名 ·  4天前
人脸识别技术法律缺口亟待补上

由于进入门槛不高、成本低等原因,几乎任何单位、任何场所都可以用,这就造成了风险的不确定性。

社论 ·  2020-11-26 10:04:25
未来几年,人工智能就业市场将会如何?

人工智能(AI)在最近几十年中已经取得了长足的发展。它引发了众多创新并为许多行业带来了数字化颠覆,但它也永远改变了就业市场。

Cassie ·  2020-11-25 10:02:07
人脸识别软件正在学习识别熊脸和牛脸

熊类生物学家Melanie Clapham与两位硅谷科技工作者合作开发了一款名为BearID的面部识别软件。该项目旨在监测灰熊,并通过疤痕和缺口等细小的差异来追踪它们 ,到目前为止,该项目已经用来识别132只灰熊。

cnBeta.COM ·  2020-11-25 08:24:13
Copyright©2005-2020 51CTO.COM 版权所有 未经许可 请勿转载