机器学习如何颠覆金融行业

作者: Harris 2020-11-13 09:58:19

在过去的十年中,金融行业采用了很多前所未有的尖端技术。这种转变在很大程度上归因于2008年金融危机之后出现的许多初创企业,它们遵循技术优先的方法来创建金融产品和服务,其目标是改善客户体验。金融科技初创厂商是智能手机、大数据、机器学习(ML)、区块链等新技术的早期采用者,被认为是被更传统的银行和金融机构所效仿的潮流引领者。

机器学习和深度学习的最新进展确实推动了计算机视觉和自然语言处理的界限。金融科技公司将不遗余力地利用这些突破来改善金融服务。根据一份报告,2019年,全球金融科技市场的价值为72.7亿美元,预计到2025年将增长到354亿美元。Statista公司预测,到2025年,通过机器学习,整个银行业将能够获得全球1820亿美元的商业价值。

这些数字确实令人难以置信,表明该行业已经从机器学习中获得了多少收益。以下深入研究金融行业中机器学习中断的示例和真实案例研究。

1. 风险管理

由于行业的性质,金融行业始终面临各种风险。如果管理不当,可能会给银行等金融机构和客户造成麻烦,在最坏的情况下也可能导致银行彻底倒闭。总是存在银行的多种风险,最常见的是信用风险和市场风险。现在,大多数银行已开始利用人工智能来最大程度地降低此类风险。

银行现在通过机器学习预测模型评估贷款申请人的信誉,以发现他们将来可能违约的可能性。那些没有信誉较差的人不会得到任何信贷,从而减少了因违约贷款而造成的银行损失。ZestFinance公司是该领域领先的金融科技初创企业,它已通过使用机器学习分析设法将默认率降低了20%。

股票市场总是被视为一个非常有风险的行业领域,因为它可能会在人们最不期待的时候崩溃,让人们和投资组合经理无所适从。然而,崩溃并不是突然发生的,事实上,导致崩溃的微观和宏观因素很多,但人类却无法提前发现这些蛛丝马迹。机器学习和时间序列模型可以用来提前预测这些模式,以便在发生问题之前及时采取行动。Trading Technologies公司和Kavout公司是这一领域的两个著名公司,它们正在利用机器学习来识别复杂的交易模式。

EquBot公司还有另一种有趣的方法,该方法使用IBM Watson抓取市场上的各种新闻和社交媒体帖子,并创建市场情绪分析以预测趋势。

2. 欺诈管理

世界各地的银行和保险公司都面临着经常性的金融欺诈企图,造成了巨大的损失。仅在美国,2019年,这些保险公司因欺诈索赔而面临340亿美元的损失。利用机器学习分类模型可以有效地检测到这些欺诈性索赔。土耳其一家保险商AKSigorta公司使用其预测模型,可以在8秒内标记出可疑的索赔,以便进一步审查,这有助于他们将此类虚假索赔的发现率提高了66%。

信用卡被盗和银行详细信息被盗造成的交易给银行和客户造成巨大损失。为了遏制此类欺诈,许多公司正在构建基于机器学习的欺诈检测系统,以检测实时欺诈交易。当这样的系统看到异常交易时,或者阻止它,或者通过OTP寻求客户确认。Datavisor这样的公司声称其机器学习可以以90%的准确率检测出30%以上的财务欺诈。

每天都有数以百万计的人收到网络钓鱼电子邮件,成千上万的人由于泄露了导致财务欺诈的财务详细信息而成为他们的牺牲品。现在,许多著名的电子邮件服务提供商已经集成了机器学习分类系统,以检测并阻止此类网络钓鱼电子邮件。仅Gmail一分钟就阻止了1000万个垃圾邮件和恶意电子邮件,从而大大减少了网络钓鱼欺诈的可能性。

3. 安全性

对于银行来说,实现强大的安全性非常重要,并且它们现在正在使用智能监控摄像头来监视本地和远程ATM上的活动。这些监控摄像头由计算机视觉和物联网技术驱动,可以检测可疑活动并发出警报。UncannyVision就是这样一家领先的公司,它为ATM提供此类基于人工智能的监控摄像头。

为了保护内部部署,安全银行还依靠指纹、视网膜、面部扫描等生物识别安全技术来对人员进行身份验证,并防止未经授权的人员进入限制区域。已实施生物识别证券的一些受欢迎的银行包括苏格兰皇家银行、富国银行、美国银行,巴克莱银行。

实际上,它不仅用于内部安全,而且还使用生物识别功能对通过智能手机访问银行服务的客户进行身份验证。它在密码之上增加了一层额外的安全保护功能,以确保正确的用户正在使用他们的移动应用程序。

4. 客户体验

通过为客户提供丰富的经验来赢得客户,可确保他们在几乎一生中都继续使用银行服务。传统上,银行不是一个非常人性化的舞台,但是在在线和电话银行时代,它开始逐渐发生变化。银行现在正在尝试通过利用机器学习将这种体验提升到另一个水平。

申请银行帐户时最繁琐的工作之一是KYC流程,客户认为这是间接费用,会延迟开设帐户的时间。现在,人们正在努力通过OCR和计算机视觉技术的帮助使KYC流程自动化来减少客户的等待时间,从而更快地处理客户文档。事实上,欧洲银行Bilco Bilbao Vizcaya Argentaria(BBVA)大大简化了KYC流程,客户只需上传自拍照照片或视频即可轻松开设帐户。

一旦客户被接纳,处理他们的定期询问并在需要时提供帮助是很重要的。近年来,银行已经成功地在其网站和移动应用程序上使用基于ML的聊天机器人和虚拟助手,为客户提供按需帮助。据一份报告称,到2022年,银行可以使用聊天机器人实现高达90%的客户互动自动化。美国银行是银行业巨头之一,它已经推出了一个虚拟助手Erica来帮助客户查询。

银行也在利用机器学习建立智能机器人顾问,为客户提供更加个性化的金融建议,这不仅对他们有利,而且增加了银行转换的可能性。对于客户和银行来说,这是一个双赢的局面。

结论

机器学习确实是世界走向的未来,这仅仅是开始。在不久的将来,金融领域将看到更多创新性的机器学习采纳方式,而这是人们现在无法想到的。

机器学习 金融行业 深度学习
上一篇:韩国首个AI女主播诞生,能以假乱真引热议,AI撒贝宁早就有了 下一篇:人工智能技术如何落地交通出行?
评论
取消
暂无评论,快去成为第一个评论的人吧

更多资讯推荐

AI的偏见:机器就是绝对理性的么?

人工智能已经遍布我们的日常生活。从YouTube的首页推荐到生产药物,它无所不在,它对我们生活的影响超出我们的想象。但人工智能一定公平吗?不,绝对不是。

读芯术 ·  1天前
机器学习平台在Kubernetes上的实践

本文回顾总结近一段时间网易云音乐机器学习平台(GoblinLab)在容器化实践的一些尝试。截止今日,音乐机器学习平台(GoblinLab)在容器化方面的尝试,已开展了一段时间,并且已经有了阶段性的成果。

王军正 ·  2天前
盘点:2020年最酷的12家机器学习初创公司

我们筛选了12家初创公司,有的已经成立了几年时间,有的刚刚起步,但他们都在致力于解决与机器学习相关的各种挑战。

CRN ·  2天前
微分方程VS机器学习,实例讲解二者异同

微分方程与机器学习作为 AI 领域建模的两种方法,各自有什么优势?

佚名 ·  3天前
用新的机器学习思考方式 来辨别自然异常与人为误导

某些对抗性事件很可能是人为设计而来。我们必须知晓其中的手法与工件是什么,这样才能真正理解深度神经网络的可靠性。

佚名 ·  4天前
1.8M超轻量目标检测模型NanoDet,比YOLO跑得快

目标检测一直是计算机视觉领域的一大难题,其目标是找出图像中的所有感兴趣区域,并确定这些区域的位置和类别。目标检测中的深度学习方法已经发展了很多年,并出现了不同类型的检测方法。

佚名 ·  4天前
面向未来系统设计的机器学习

Elias Fallon是行业领先的电子设计自动化技术提供商Cadence Design Systems公司的工程主管。他带领其定制IC研发团队以及电子设计自动化(EDA)产品团队进行项目开发。

Elias Fallon ·  4天前
2021年码农应该了解的所有机器学习算法

随着我对机器学习的了解的增加,机器学习算法的数量也在增加! 本文将介绍数据科学界常用的机器学习算法。

闻数起舞 ·  2020-11-23 09:26:22
Copyright©2005-2020 51CTO.COM 版权所有 未经许可 请勿转载