用新的机器学习思考方式 来辨别自然异常与人为误导

作者: 佚名 2020-11-24 19:31:41

深度神经网络是一种使用数学模型处理图像以及其他数据的多层系统,而且目前已经发展为人工智能的重要基石。

深度神经网络得出的结果看似复杂,但同样有可能受到误导。而这样的误导轻则致使其将一种动物错误识别为另一种动物,重则在自动驾驶汽车上将停车标志误解为正常前进。

休斯敦大学的一位哲学家在发表于《自然机器智能》上的一篇论文中提到,关于这些假想问题背后的普遍假设,在于误导性信息可能给这类网络的可靠性造成严重影响。

用新的机器学习思考方式 来辨别自然异常与人为误导

随着机器学习以及其他形式的人工智能越来越深入渗透至社会,其用途也开始涵盖从ATM机到网络安全系统的广泛领域。哲学系副教授Cameron Buckner表示,正是这种普及,让了解明显错误的来源变得无比重要。研究人员们将这类信息称为“对抗性示例”,指当深度神经网络在学习过程中遇到训练输入之外的其他信息时,则很有可能总结出错误的结论、最终引发图像或数据误判。之所以被表述为“对抗性”,是因为这样的问题往往只能由另一机器学习网络所产生或发现。作为机器学习领域中的一种前沿技术,对抗双方将不断升级自身能力,以更复杂的方法尝试实现干扰与反干扰。

Buckner提到,“但这种对抗有时候可能源自人为误导,因此要想更好地了解神经网络的可靠性,我们必须对误导问题做出深入研究。”

换言之,这种误导结果很可能源自网络需要处理的内容、与所涉及的实际模式之间的某种相互作用所引发。这与传统意义上的误导,似乎还不完全是同一种概念。

Buckner写道,“理解对抗性整合的含义,可能需要探索第三种可能性:其中至少有一部分模式属于人为创造。因此,目前的难题在于,直接丢弃这些模式可能有损模型学习,但直接使用则具有潜在风险。”

引发机器学习系统错误的对抗性事件除了无心而发,更可能是有意为之。Buckner认为这才是更严重的风险,“意味着恶意攻击者可能会欺骗某些本应可靠的系统,例如安全类应用程序。”

例如,基于人脸识别技术的安全系统很可能遭遇黑客入侵,导致违规行为的出现;或者在交通标志上张贴某些图形,导致自动驾驶汽车产生意外误解。

先前的研究发现,与人们的预期相反,使用场景中天然存在着一些对抗性示例,即机器学习系统有可能因为意外交互(而非因数据错误)而产生误解。这类情况相当罕见,必须通过其他人工智能技术才可能发现。

但这些问题又真实存在,要求研究人员重新考虑该如何辨别自然异常与人为误导。

事实上,我们对这类人为误导的理解并不清晰。但这有点像是相机镜头上时不时出现的光晕,类似于依靠光晕来判断画面中太阳的位置,研究人员似乎也可以借助这样的蛛丝马迹推断机器学习中的恶意误导方法。

更重要的是,这种新的思考方式也将影响人们在深度神经网络中使用工件的方式,包括不应简单将误解结论视为深度学习无效。

他总结道,“某些对抗性事件很可能是人为设计而来。我们必须知晓其中的手法与工件是什么,这样才能真正理解深度神经网络的可靠性。”

机器学习 神经网络 人工智能
上一篇:1.8M超轻量目标检测模型NanoDet,比YOLO跑得快 下一篇:人脸识别软件正在学习识别熊脸和牛脸
评论
取消
暂无评论,快去成为第一个评论的人吧

更多资讯推荐

人工智能违抗主人的命令,甚至发声嘲笑!意识觉醒了?

人工智能作为当下研究的热点项目,各国都为其投入了无限的精力以及心血,渴望能够超越其他国家掌握先机,进而提高自己在国际社会中的地位。而人工智能就目前来看,也已经获得了不小的成果,扫地机器人、机械臂、智能音箱等一切都逐渐日常化。

互联狗 ·  22h前
俄媒:人工智能可利用面部识别判断信仰倾向

《俄罗斯报》1月19日发表了题为《藏不住了?》的文章称,美国斯坦福大学学者迈克尔·科辛斯基教授研发出了一种可根据人脸表情判断其信仰倾向的人工智能技术。

参考消息 ·  22h前
到2030年,人工智能会发展成什么样?

人工智能、机器学习、深度学习这些热词近来被频繁使用。让承认人工智能将融于世界的现实期望固然很赞,但了解和揭秘人工智能同样意义重大。这篇文章将阐述人工智能的所有概念,全面理解人工智能,避免混淆这些概念。

佚名 ·  1天前
人工智能辅助诊疗发展现状与战略研究

本文选取健康医疗信息人机交互、数据智能中的语义理解与医学影像分析作为切入点,简要阐述了人工智能在辅助诊疗问题上的发展方向与现状,讨论了智能诊疗技术发展与应用的问题与挑战,为相关部门提供决策支持。

佚名 ·  1天前
大国竞争的焦点:人工智能与数字主权

2021年1月13日,美国智库大西洋理事会发布题为《大国竞争: 人工智能、中国和全球对数字主权的追求》的报告,本报告总结了2020年度人工智能对话和会议的关键要点,确定了世界不同地区在应对新兴技术时面临的挑战和机遇,并评估了中国在其中的作用。

佚名 ·  1天前
闲聊几句就掏心掏肺?这届人工智能,把你的隐私当成了谈资

随着时代的进步,高科技产品在我们的生活中无处不在,但是,你是否质疑过,自己的隐私正在被这些高科技“生物”所窃取?事实上,我们的隐私正在处于泄露中。

木子Yanni ·  1天前
人工智能不智能?一开始方向就错了

上个世纪50年代,约翰·麦卡锡提出了人工智能的概念,从此“AI”这个名字就诞生了。随着技术的发展,AI被划分为弱人工智能(简称“弱AI”)和强人工智能(简称强AI)两类,这个概念是由一位美国哲学家提出的,两者的区别就在于是否具备自主意识和思维,这就是AI发展的瓶颈。

刘梦还 ·  1天前
多模态生物识别有什么优势

什么是多模态生物识别呢?多模态生物识别就是多种生物识别技术相互融合,满足不同场景和安全级别需要。

智能制造网 ·  1天前
Copyright©2005-2021 51CTO.COM 版权所有 未经许可 请勿转载