假3D场景逼真到火爆外网!超1亿像素无死角,被赞AI渲染新高度

作者: 佚名 2021-10-18 17:40:07

本文经AI新媒体量子位(公众号ID:QbitAI)授权转载,转载请联系出处。

先来看一段“视频”,有没有看出什么不对劲的地方?

其实,这仅仅是由一组照片渲染出来的(右下角为拍摄照片)!

生成的也不仅仅是一段视频,更是一个3D场景模型,不仅能任意角度随意切换、高清无死角,还能调节曝光、白平衡等参数,生成船新的照片:

在完全不同的场景下,例如一个坦克厂中,同样能用一组照片渲染出逼真3D场景,相同角度与真实拍摄图像几乎“完全一致”:

要知道,之前苹果虽然也做过一组照片生成目标物体3D模型的功能,但最多就是一件物体,例如一只箱子:

这次可是整个3D场景!

这是德国埃尔朗根-纽伦堡大学的几位研究人员做的项目,效果一出就火得不行,在国外社交媒体上赞数超过5k,阅读量达到36w+

那么,这样神奇的效果,究竟是怎么生成的呢?

用照片还原整个3D场景图

整体来说,这篇论文提出了一种基于点的可微神经渲染流水线ADOP(Approximate Differentiable One-Pixel Point Rendering),用AI分析输入图像,并输出新角度的新图像。

假3D场景逼真到火爆外网!超1亿像素无死角,被赞AI渲染新高度

在输入时,由于需要建模3D场景,因此这里的照片需要经过严格拍摄,来获取整个场景的稀疏点云数据。

具体来说,作者在从照片获取点云数据时,采用了COLMAP

先从多个不同的角度拍摄场景中的照片,其中每张照片的视角都会经过严格控制。

然后采用SfM(Structure From Motion,运动恢复结构)方法,来获取相机内外参数,得到整个场景的3D重建数据,也就是表示场景结构的稀疏点云:

假3D场景逼真到火爆外网!超1亿像素无死角,被赞AI渲染新高度

然后,包含点云等信息的场景数据会被输入到流水线中,进行进一步的处理。

流水线(pipeline)主要分为三个部分:可微光栅化器、神经渲染器和可微色调映射器。

假3D场景逼真到火爆外网!超1亿像素无死角,被赞AI渲染新高度

首先,利用多分辨率的单像素点栅格化可微渲染器(可微光栅化器),将输入的相机参数、重建的点云数据转换成稀疏神经图像。

其中,模型里关于图像和点云对齐的部分,采用了NavVis数据集来训练。

然后,利用神经渲染器,对稀疏神经图像进行阴影计算和孔洞填充,生成HDR图片。

假3D场景逼真到火爆外网!超1亿像素无死角,被赞AI渲染新高度

最后,由于不是每个设备都支持HDR画面,因此在显示到LDR设备之前,还需要利用基于物理的可微色调映射器改变动态范围,将HDR图像变成LDR图像。

每个场景300+图像训练

这个新模型的优势在哪里?

由于模型的所有阶段都可微,因此这个模型能够优化场景所有参数(相机模型、相机姿势、点位置、点颜色、环境图、渲染网络权重、渐晕、相机响应函数、每张图像的曝光和每张图像的白平衡),并用来生成质量更高的图像。

具体到训练上,作者先是采用了688张图片(包含73M个点)来训练这个神经渲染流水线(pipeline)。

假3D场景逼真到火爆外网!超1亿像素无死角,被赞AI渲染新高度

针对demo中的几个场景(火车、灯塔、游乐园、操场等),作者们分别用高端摄像机拍摄了300~350张全高清图像,每个场景生成的像素点数量分别为10M、8M、12M和11M,其中5%的图像用作测试。

也就是说,制作这样一个3D场景,大约需要几百张图像,同时每张图像的拍摄需要经过严格的角度控制。

不过仍然有读者表示,拍几百张图像就能用AI做个场景出来,这个速度比当前人工渲染是要快多了。

假3D场景逼真到火爆外网!超1亿像素无死角,被赞AI渲染新高度

功能上,模型既能生成可以调节参数的新角度照片,还能自动插值生成全场景的3D渲染视频,可以说是挺有潜力的。

那么,这个模型的效果与当前其他模型的渲染效果相比如何呢?

实时显示1亿+像素点场景

据作者表示,论文中采用的高效单像素点栅格化方法,使得ADOP能够使用任意的相机模型,并实时显示超过1亿个像素点的场景。

肉眼分辨生成结果来看,采用同行几个最新模型生成的图片,或多或少会出现一些伪影或是不真实的情况,相比之下ADOP在细节上处理得都非常不错:

假3D场景逼真到火爆外网!超1亿像素无死角,被赞AI渲染新高度

从数据来看,无论是火车、操场、坦克还是灯塔场景,在ADOP模型的渲染下,在VGG、LPIPS和PSNR上几乎都能取得最优秀的结果(除了坦克的数据)。

假3D场景逼真到火爆外网!超1亿像素无死角,被赞AI渲染新高度

不过,研究本身也还具有一些局限性,例如单像素点渲染仍然存在点云稀疏时,渲染出现孔洞等问题。

但整体来看,实时显示3D场景的效果还是非常出类拔萃的,不少业内人士表示“达到了AI渲染新高度”。

已经有不少网友开始想象这项研究的用途,例如给电影制片厂省去一大波时间和精力:

假3D场景逼真到火爆外网!超1亿像素无死角,被赞AI渲染新高度

(甚至有电影系的学生想直接用到毕设上)

假3D场景逼真到火爆外网!超1亿像素无死角,被赞AI渲染新高度

对游戏行业影响也非常不错:

在家就能搞3A大作的场景,是不是也要实现了?简直让人迫不及待。

假3D场景逼真到火爆外网!超1亿像素无死角,被赞AI渲染新高度

还有人想象,要是能在iPhone上实现就好了(甚至已经给iPhone 15预定上了):

假3D场景逼真到火爆外网!超1亿像素无死角,被赞AI渲染新高度

对于研究本身,有网友从行外人视角看来,感觉更像是插帧模型(也有网友回应说差不多是这样):

假3D场景逼真到火爆外网!超1亿像素无死角,被赞AI渲染新高度

也有网友表示,由于需要的图像比较多,效果没有宣传中那么好,对研究潜力持保留态度:

假3D场景逼真到火爆外网!超1亿像素无死角,被赞AI渲染新高度

虽然目前作者们已经建立了GitHub项目,但代码还没有放出来,感兴趣的同学们可以先蹲一波。

至于具体的开源时间,作者们表示“会在中了顶会后再放出来”。(祝这篇论文成功被顶会收录~)

论文地址:
https://arxiv.org/abs/2110.06635

项目地址(代码还没po出来):
https://github.com/darglein/ADOP

AI 数据 人工智能
上一篇:手机人脸识别的工作原理是什么?一文带你看懂 下一篇:ResNet假说被推翻?Reddit小哥:这么多年都没人搞懂Ta的原理
评论
取消
暂无评论,快去成为第一个评论的人吧

更多资讯推荐

AI版「女娲」来了!文字生成图像、视频,8类任务一个模型搞定

近来,视觉合成任务备受关注。几天前英伟达的 GauGAN 刚刚上新了 2.0 版本,现在一个新视觉合成模型 Nüwa(女娲)也火了。

机器之心报道 ·  1天前
何恺明MAE大火后,想梳理下视觉Transformer?这篇梳理了100多个

在这篇论文中,Yang Liu 等几位研究者全面回顾了用于三个基本 CV 任务(分类、检测和分割)的 100 多个视觉 Transfomer。

机器之心报道 ·  1天前
抛弃热图回归,滑铁卢大学提出多人姿态估计新方法

近日,来自加拿大滑铁卢大学的研究者提出了一种全新的单阶段多人关键点和姿态检测方法 KAPAO。

机器之心编辑部 ·  1天前
2022年人工智能领域发展七大趋势

人工智能已成为人类有史以来最具革命性的技术之一。“人工智能是我们作为人类正在研究的最重要的技术之一。它对人类文明的影响将比火或电更深刻”。2020年1月,谷歌公司首席执行官桑达尔·皮查伊在瑞士达沃斯世界经济论坛上接受采访时如是说。

刘霞 ·  1天前
三分钟回顾,2021年11月无人机领域动态一览

今年11月,无人机行业便出现不少融资、推新等活动,接下来我们不妨一起来看一下吧!

智能制造网 ·  1天前
颠覆大规模预训练!清华杨植麟组提出全新NLP学习框架TLM,学习效率×100倍

近期,清华大学团队提出一种无需预训练的高效 NLP 学习框架,在仅使用了1% 的算力和1% 的训练语料的条件下,在众多 NLP 任务上实现了比肩甚至超越预训练模型的性能。

佚名 ·  2天前
三分钟回顾,2021年11月自动驾驶行业全动态一览

缺芯荒加疫情影响,今年以来自动驾驶行业发展被迫放缓,在此背景下,我们不妨不妨从融资、动态两方面,一起来看看复苏后的自动驾驶是如何极速狂飙的吧!

智能制造网 ·  2天前
2021大盘点,这十家AI初创公司有点“料”!

今年的AI初创公司榜单中,涵盖了用于构建AI语音助手的无代码网络平台,用于组织提升和员工技能再培训的AI人才智能平台,以及AI驱动的地理空间分析平台等等。

至顶网 ·  2天前
Copyright©2005-2021 51CTO.COM 版权所有 未经许可 请勿转载