收入预测案例与K近邻点分类算法

课程目标:处理数据集;金融数据标准化;K近邻点分类模型的选择和应用;用K近邻点模型进行预测;K近邻点模型的评估

24小时内答疑 课时永久观看 15分钟内无条件退款
1. 仅限付费视频课程适用
2. 购买后15分钟内可以找到客服进行沟通退款
3. 退款将返还至51CTO学院账户,不支持提现
4. 下载资料后不再享有退款特权
5. 客服(Tel:400-101-1651)
6. 最终解释权归51CTO所有
5分 共3课时,共19分钟
现价¥29.00
购买
  1. 课程介绍
  2. 课程大纲
课程目标

处理数据集;金融数据标准化;K近邻点分类模型的选择和应用;用K近邻点模型进行预测;K近邻点模型的评估

适用人群

学习金融学、数据、计算机的高校生、在职的基金经理、投研总监、专业投资者、金融分析师、量化分析

课程简介

  案例数据集来源于UCI网站。案例是基于美国统计局的人口普查资料数据。案例的目标是希望利用这些数据来预测年收入大于5万美元的家庭。该数据集内包含48842条记录和14个特征变量,包括1个分类变量。变量包括类别型,字母型,和数值型。 


  K近邻点分类算法是机器学习领域中的一个基础且非常重要的算法。K近邻点算法是一种基于实例的算法,就是把所有训练样本储存起来(形成记忆)。当我们对一个新纪录进行预测时,就将新记录与记忆中的记录进行比较,找到最接近(或最类似)新记录的K条记录,然后通过分类规则来确定该新记录所属的类别。Python的优势在于开源,基于Python的各类机器学习算法非常丰富而且方便使用。我们将以美国统计局的人口普查资料数据案例数据集为一个点的同时,讨论 K近邻点分类算法的原理,及其在Python中的算法,并用他们来解决案例的预测分类。


 本案例的特点是将家庭收入预测问题的解决方案与机器学习中的K近邻点分类算法进行结合,并利用Python设计一个自动分类的预测算法来对案例数据集进行学习并辅助我们进行决策。这三者的结合就是智能金融在金融行业的一种经典应用。 


  通过案例学习后,如果学生能够独立完成作业,学生将能达到以下预期目标:

  1. 能够处理一个金融问题的数据集;

  2. 金融数据的标准化处理;

  3.  K近邻点分类模型的选择和应用;

  4. 用K近邻点分类模型进行预测;

  5. 对K近邻点模型进行评估。

  6. 学生将获得本案例的Python源代码。

1案例数据集分析 [免费试看]
05:30
2K近邻点算法基本原理
04:49
3Python中K近邻点模型的介绍及案例的Python代码分析
09:01
讲师介绍
量化金融研究中心
讲师评分4.9分
量化金融研究中心为首都经济贸易大学教师和金融行业的从业人员自愿组成的学术团体,依托北京市金融发展促进中心
X
Copyright©2005-2020 51CTO.COM 版权所有 未经许可 请勿转载