多层感知机的基本知识

我们将以多层感知机(multilayer perceptron,MLP)为例,介绍多层神经网络的概念。

隐藏层

下图展示了一个多层感知机的神经网络图,它含有一个隐藏层,该层中有5个隐藏单元。

Image Name

表达公式

设小批量样本 X ∈ R n × d \boldsymbol{X} \in \mathbb{R}^{n \times d} XRn×d n n n为批量大小, d d d为1输入个数。假设多层感知机只有一个隐藏层,其中隐藏单元个数为 h h h。记隐藏层的输出(也称为隐藏层变量或隐藏变量)为 H \boldsymbol{H} H,有 H ∈ R n × h \boldsymbol{H} \in \mathbb{R}^{n \times h} HRn×h。设隐藏层的权重参数和偏差参数分别为 W h ∈ R d × h \boldsymbol{W}_h \in \mathbb{R}^{d \times h} WhRd×h b h ∈ R 1 × h \boldsymbol{b}_h \in \mathbb{R}^{1 \times h} bhR1×h,输出层的权重和偏差参数分别为 W o ∈ R h × q \boldsymbol{W}_o \in \mathbb{R}^{h \times q} WoRh×q b o ∈ R 1 × q \boldsymbol{b}_o \in \mathbb{R}^{1 \times q} boR1×q

下面是单隐藏层的多层感知机的设计。其输出 O ∈ R n × q \boldsymbol{O} \in \mathbb{R}^{n \times q} ORn×q的计算为

H = X W h + b h , O = H W o + b o , \begin{aligned} \boldsymbol{H} &= \boldsymbol{X} \boldsymbol{W}_h + \boldsymbol{b}_h,\\ \boldsymbol{O} &= \boldsymbol{H} \boldsymbol{W}_o + \boldsymbol{b}_o, \end{aligned} HO=XWh+bh,=HWo+bo,

将以上两个式子联立起来,得:

O = ( X W h + b h ) W o + b o = X W h W o + b h W o + b o . \boldsymbol{O} = (\boldsymbol{X} \boldsymbol{W}_h + \boldsymbol{b}_h)\boldsymbol{W}_o + \boldsymbol{b}_o = \boldsymbol{X} \boldsymbol{W}_h\boldsymbol{W}_o + \boldsymbol{b}_h \boldsymbol{W}_o + \boldsymbol{b}_o. O=(XWh+bh)Wo+bo=XWhWo+bhWo+bo.

从联立后的式子可以看出,虽然神经网络引入了隐藏层,却依然等价于一个单层神经网络:其中输出层权重参数为 W h W o \boldsymbol{W}_h\boldsymbol{W}_o WhWo,偏差参数为 b h W o + b o \boldsymbol{b}_h \boldsymbol{W}_o + \boldsymbol{b}_o bhWo+bo。所以即便再添加更多的隐藏层,依然只与仅含输出层的单层神经网络等价。

激活函数

以上问题在于全连接层只是对数据做仿射变换(affine transformation),而多个仿射变换的叠加仍然是一个仿射变换。所以需要一个非线性函数来进行变换,打破这种仿射变换,然后输出再作为下一个全连接层的输入。这个非线性函数被称为激活函数(activation function)。

下面我们介绍几个常用的激活函数:

ReLU函数

ReLU(rectified linear unit)函数提供了一个简单的非线性变换。给定元素 x x x,该函数定义为

ReLU ( x ) = max ⁡ ( x , 0 ) . \text{ReLU}(x) = \max(x, 0). ReLU(x)=max(x,0).

由上述可得,ReLU函数只保留正数元素,并将负数元素清零。下面我们把ReLU函数画出来。先定义一个绘图函数xyplot。

注:d2lzh1981为一个包名,先封装好然后可以直接调用;具体代码在下面Github页面上:https://github.com/d2l-ai/d2l-zh/tree/master/d2lzh

%matplotlib inline
import torch
import numpy as np
import matplotlib.pyplot as plt
import sys
sys.path.append("/home/input") #文件夹路径
import d2lzh1981 as d2l
def xyplot(x_vals, y_vals, name):
    # d2l.set_figsize(figsize=(5, 2.5))
    plt.plot(x_vals.detach().numpy(), y_vals.detach().numpy())
    plt.xlabel('x')
    plt.ylabel(name + '(x)')
x = torch.arange(-8.0, 8.0, 0.1, requires_grad=True)
y = x.relu()
xyplot(x, y, 'relu')

y.sum().backward()
xyplot(x, x.grad, 'grad of relu')

Sigmoid函数

sigmoid函数将元素的值变换到0和1之间:

sigmoid ( x ) = 1 1 + exp ⁡ ( − x ) . \text{sigmoid}(x) = \frac{1}{1 + \exp(-x)}. sigmoid(x)=1+exp(x)1.

y = x.sigmoid()
xyplot(x, y, 'sigmoid')


对sigmoid函数求导,其导数为:
sigmoid ′ ( x ) = sigmoid ( x ) ( 1 − sigmoid ( x ) ) . \text{sigmoid}'(x) = \text{sigmoid}(x)\left(1-\text{sigmoid}(x)\right). sigmoid(x)=sigmoid(x)(1sigmoid(x)).

tanh函数

tanh(双曲正切)函数可以将元素的值变换到-1和1之间:

tanh ( x ) = 1 − exp ⁡ ( − 2 x ) 1 + exp ⁡ ( − 2 x ) . \text{tanh}(x) = \frac{1 - \exp(-2x)}{1 + \exp(-2x)}. tanh(x)=1+exp(2x)1exp(2x).

当输入接近0时,tanh函数接近线性变换。tanh函数在坐标系的原点上对称。

y = x.tanh()
xyplot(x, y, 'tanh')


tanh的导数为:
tanh ′ ( x ) = 1 − tanh 2 ( x ) . \text{tanh}'(x) = 1 - \text{tanh}^2(x). tanh(x)=1tanh2(x).

x.grad.zero_()
y.sum().backward()
xyplot(x, x.grad, 'grad of tanh')

激活函数的选择

ReLu函数是一个通用的激活函数,一般都用ReLu。但是,ReLU函数只能在隐藏层中使用。
用于分类器时,sigmoid函数及其组合通常效果更好。由于梯度消失问题,有时要避免使用sigmoid和tanh函数。

多层感知机

多层感知机含有至少一个隐藏层的由全连接层组成的神经网络,且每个隐藏层的输出通过激活函数进行变换。
H = ϕ ( X W h + b h ) , O = H W o + b o , \begin{aligned} \boldsymbol{H} &= \phi(\boldsymbol{X} \boldsymbol{W}_h + \boldsymbol{b}_h),\\ \boldsymbol{O} &= \boldsymbol{H} \boldsymbol{W}_o + \boldsymbol{b}_o, \end{aligned} HO=ϕ(XWh+bh),=HWo+bo,

多层感知机从零开始的实现

import torch
import numpy as np
import sys
sys.path.append("/home/input") #文件夹路径
import d2lzh1981 as d2l
#获取数据集
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size,root='/home/input/FashionMNIST2065')
#自定义模型参数
num_inputs, num_outputs, num_hiddens = 784, 10, 256

W1 = torch.tensor(np.random.normal(0, 0.01, (num_inputs, num_hiddens)), dtype=torch.float)
b1 = torch.zeros(num_hiddens, dtype=torch.float)
W2 = torch.tensor(np.random.normal(0, 0.01, (num_hiddens, num_outputs)), dtype=torch.float)
b2 = torch.zeros(num_outputs, dtype=torch.float)

params = [W1, b1, W2, b2]
for param in params:
    param.requires_grad_(requires_grad=True)
#定义激活函数
def relu(X):
    return torch.max(input=X, other=torch.tensor(0.0))
#定义网络
def net(X):
    X = X.view((-1, num_inputs))
    H = relu(torch.matmul(X, W1) + b1)
    return torch.matmul(H, W2) + b2
#定义损失函数
loss = torch.nn.CrossEntropyLoss()
#训练
num_epochs, lr = 5, 100.0
 def train_ch3(net, train_iter, test_iter, loss, num_epochs, batch_size,
               params=None, lr=None, optimizer=None):
     for epoch in range(num_epochs):
         train_l_sum, train_acc_sum, n = 0.0, 0.0, 0
         for X, y in train_iter:
             y_hat = net(X)
             l = loss(y_hat, y).sum()
             
             # 梯度清零
             if optimizer is not None:
                 optimizer.zero_grad()
             elif params is not None and params[0].grad is not None:
                 for param in params:
                     param.grad.data.zero_()
            
             l.backward()
             if optimizer is None:
                 d2l.sgd(params, lr, batch_size)
             else:
                 optimizer.step()  # “softmax回归的简洁实现”一节将用到
             
             
             train_l_sum += l.item()
             train_acc_sum += (y_hat.argmax(dim=1) == y).sum().item()
             n += y.shape[0]
         test_acc = evaluate_accuracy(test_iter, net)
         print('epoch %d, loss %.4f, train acc %.3f, test acc %.3f'
               % (epoch + 1, train_l_sum / n, train_acc_sum / n, test_acc))

d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, batch_size, params, lr)

多层感知机pytorch简洁实现

import torch
from torch import nn
from torch.nn import init
import numpy as np
import sys
sys.path.append("/home/input")
import d2lzh1981 as d2l
num_inputs, num_outputs, num_hiddens = 784, 10, 256
    
net = nn.Sequential(
        d2l.FlattenLayer(),
        nn.Linear(num_inputs, num_hiddens),
        nn.ReLU(),
        nn.Linear(num_hiddens, num_outputs), 
        )
    
for params in net.parameters():
    init.normal_(params, mean=0, std=0.01)
num_inputs, num_outputs, num_hiddens = 784, 10, 256
    
net = nn.Sequential(
        d2l.FlattenLayer(),
        nn.Linear(num_inputs, num_hiddens),
        nn.ReLU(),
        nn.Linear(num_hiddens, num_outputs), 
        )
    
for params in net.parameters():
    init.normal_(params, mean=0, std=0.01)