神经网络中的各种损失函数介绍

作者: 人工智能遇见磐创 2019-10-08 15:39:54

 不同的损失函数可用于不同的目标。在这篇文章中,我将带你通过一些示例介绍一些非常常用的损失函数。这篇文章提到的一些参数细节都属于tensorflow或者keras的实现细节。

损失函数的简要介绍

损失函数有助于优化神经网络的参数。我们的目标是通过优化神经网络的参数(权重)来很大程度地减少神经网络的损失。通过神经网络将目标(实际)值与预测值进行匹配,再经过损失函数就可以计算出损失。然后,我们使用梯度下降法来优化网络权重,以使损失最小化。这就是我们训练神经网络的方式。

均方误差

当你执行回归任务时,可以选择该损失函数。顾名思义,这种损失是通过计算实际(目标)值和预测值之间的平方差的平均值来计算的。

例如,你有一个神经网络,通过该网络可以获取一些与房屋有关的数据并预测其价格。在这种情况下,你可以使用MSE(均方误差)损失。基本上,在输出为实数的情况下,应使用此损失函数。

神经网络中的各种损失函数介绍

二元交叉熵

当你执行二元分类任务时,可以选择该损失函数。如果你使用BCE(二元交叉熵)损失函数,则只需一个输出节点即可将数据分为两类。输出值应通过sigmoid激活函数,以便输出在(0-1)范围内。

例如,你有一个神经网络,该网络获取与大气有关的数据并预测是否会下雨。如果输出大于0.5,则网络将其分类为会下雨;如果输出小于0.5,则网络将其分类为不会下雨。即概率得分值越大,下雨的机会越大。

神经网络中的各种损失函数介绍

训练网络时,如果标签是下雨,则输入网络的目标值应为1,否则为0。

重要的一点是,如果你使用BCE损失函数,则节点的输出应介于(0-1)之间。这意味着你必须在最终输出中使用sigmoid激活函数。因为sigmoid函数可以把任何实数值转换(0–1)的范围。(也就是输出概率值)

如果你不想在最后一层上显示使用sigmoid激活函数,你可以在损失函数的参数上设置from logits为true,它会在内部调用Sigmoid函数应用到输出值。

多分类交叉熵

当你执行多类分类任务时,可以选择该损失函数。如果使用CCE(多分类交叉熵)损失函数,则输出节点的数量必须与这些类相同。最后一层的输出应该通过softmax激活函数,以便每个节点输出介于(0-1)之间的概率值。

例如,你有一个神经网络,它读取图像并将其分类为猫或狗。如果猫节点具有高概率得分,则将图像分类为猫,否则分类为狗。基本上,如果某个类别节点具有很高的概率得分,图像都将被分类为该类别。

神经网络中的各种损失函数介绍

为了在训练时提供目标值,你必须对它们进行一次one-hot编码。如果图像是猫,则目标向量将为(1,0),如果图像是狗,则目标向量将为(0,1)。基本上,目标向量的大小将与类的数目相同,并且对应于实际类的索引位置将为1,所有其他的位置都为零。

如果你不想在最后一层上显示使用softmax激活函数,你可以在损失函数的参数上设置from logits为true,它会在内部调用softmax函数应用到输出值。与上述情况相同。

稀疏多分类交叉熵

该损失函数几乎与多分类交叉熵相同,只是有一点小更改。

使用SCCE(稀疏多分类交叉熵)损失函数时,不需要one-hot形式的目标向量。例如如果目标图像是猫,则只需传递0,否则传递1。基本上,无论哪个类,你都只需传递该类的索引。

神经网络中的各种损失函数介绍

这些是最重要的损失函数。训练神经网络时,可能会使用这些损失函数之一。

下面的链接是Keras中所有可用损失函数的源代码。

(https://github.com/keras-team/keras/blob/c658993cf596fbd39cf800873bc457e69cfb0cdb/keras/backend/numpy_backend.py)

人工智能 损失函数 网络
上一篇:你的人脸数据都去了哪儿? 下一篇:制裁中国AI公司 美国打偏了吗?
评论
取消
暂无评论,快去成为第一个评论的人吧

更多资讯推荐

面部识别的利与弊:是福还是祸?

虽然现代技术使面部识别更加精确和安全,但与面部识别隐私问题和监控有关的担忧也在增加。因此,让我们在这篇文章中探讨一下这该技术的利与弊。

Naveen Joshi ·  2021-06-01 16:36:22
人工智能和5G如何结合以实现物联网收入最大化

网络系统通过信令和使用软件以及分析来检测和分类设备非常棘手,并且对有限且日益紧张的网络资源提出了巨大的需求。然而,解决这些问题有一个主要解决方案:采用人工智能、自动化和5G技术。

Jordi Castellvi ·  2021-06-01 13:49:15
MIT团队最新研究,仅靠LiDAR和2D地图实现端到端自动驾驶

最近, MIT 计算机科学与人工智能实验室(CSAIL)团队成功展示了一种基于机器学习的自动驾驶系统,该端到端框架仅使用 LiDAR获取的原始 3D 点云数据和类似于手机上的低分辨率 GPS 地图就能进行自主导航,并且大大提升了鲁棒性。

文龙 ·  2021-06-01 12:47:51
自然语言处理(NLP)的历史及其发展方向

自然语言处理的历史是一个充满曲折的故事。它从徒劳的研究开始,经过多年卓有成效的工作,最后结束于一个我们仍在试图找出该领域极限的时代。今天,让我们来一起探索这一AI科学分支的发展。

佚名 ·  2021-06-01 12:46:26
是福还是祸?人脸识别技术的利与弊

面部识别并不是一项全新的技术,但人工智能和机器学习不断使面部识别变得更好。苹果通过引入具有 3D 扫描功能的面部生物识别系统和 iPhone 的 Face ID,提高了面部识别的标准。

Naveen Joshi ·  2021-06-01 11:11:01
人工智能能否使机器具有流体智力?

麻省理工学院和奥地利研究人员为灵活的人工智能创造了“液体”机器学习。

千家网 ·  2021-06-01 10:38:55
大脑模拟NLP,高德纳奖得主:神经元集合演算用于句子解析

一个简单的大脑模型为人工智能研究提供了新的方向。世界顶尖计算机科学理论学家、哥德尔奖和高德纳奖获得者、哥伦比亚大学计算机科学教授 Christos Papadimitriou 关于「大脑中单词表征」的演讲。

Ben Dickson ·  2021-06-01 09:39:24
美城市Baltimore可能颁布最严格的面部识别禁令

据介绍,拟议的法令将禁止私人或商业组织,甚至执法机构在城市使用面部识别技术。

千家网 ·  2021-06-01 09:34:07
Copyright©2005-2021 51CTO.COM 版权所有 未经许可 请勿转载