人工智能在国防领域将发挥什么作用?

作者: 安防展览网 2021-05-06 17:15:44

 研究表示,人工智能技术的发展势头正猛;对于国防行业来说,该技术至关重要。那些率先采用人工智能技术的机构或将受益匪浅,有了人工智能技术,军事行动就会更加高效与准确;与此同时,从长远角度上看,该技术的研发成本也会不断减少。

防御装置中采用人工智能技术会引发很多伦理问题,这一问题在自主武器系统上更为凸显,此研究也对此进行了详细介绍。此外,该研究还表示,国防采购流程非常复杂,这让许多商业公司都不太敢同政府进行合作;而在技术采购上,商业公司与政府的合作尤为关键。

人工智能在国防领域的主要应用

(1)情报、监视和侦察。由于有大量可用数据集,因此人工智能在情报领域有很大的用处。情报界以及有大量相关的正在进行中的人工智能项目了。就CIA(中央情报局)就有140个使用AI来完成图像识别和预测分析任务的项目。

(2)后勤。人工智能在军事后勤领域也有很大的应用潜力。空军已经开始使用人工智能来进行飞机维护预测。

(3)网络空间行动。人工智能也有望成为促进军事网络空间行动的关键技术。参议院军事委员会、美国网络司令部司令上将Michael Rogers早在2016年就认为,在网络空间领域只以来人类情报是一个失败的战略。随后他澄清说,应当应用一定程度的人工智能或机器学习技术。DARPA 2016网络挑战赛也证明了AI赋能的网络工具的潜在能力,比赛参与者开发了能够自动检测、评估和分发补丁的AI算法。这些能力都可以在未来的网络活动中提供不同的优势。

(4)信息操纵和深度伪造。人工智能技术可以用来制造逼真的伪造图片、音频和视频,这也就是今年大火的“deepfakes”(深度伪造)技术。恶意攻击者可以用深度伪造技术来发起信息操纵活动,攻击每个,如生成虚假新闻报道、影响公共信息、侵蚀公共信任、损害名人名声。为了应对深度伪造技术,DARPA发起了媒体取证项目,以寻求自动检测修改、提供关于视觉媒体真实性信息的理由。

(5)指挥和控制。利用AI在分析方面的能力应用于指挥和控制,空军开发了一个用于多域指挥和控制的系统,未来人工智能还可能用于融合来自不同域的传感器的数据来创建一个信息的单独源。

(6)半自动和自动驾驶车辆。努力将人工智能融入到半自动和自动驾驶车辆中,包括战斗机、无人机、地面车辆和海军舰艇等。人工智能在这些领域的应用与商业半自动驾驶车辆类似,即使用人工智能技术来感知环境、识别物体、融合传感器数据、规划路径、以及与其他车辆之间进行通信。

(7)致命自主武器系统(LAWS)。LAWS是一种特殊的武器系统,使用传感器和计算机算法来独立地识别目标和指挥武器系统在没有人为干预的情况下打击目标。虽然这样的系统目前还不存在,但军事专家相信在未来通信降级或拒绝的特殊环境下,传统武器系统无法工作的情况下LAWS会启到很重要的作用。

人工智能在国防领域的发展前景

从历史发展趋势和未来战争需求看,人工智能越来越成为推动新一轮军事革命的核心驱动力,未来战争需求也越来越呼唤人工智能的军事应用。新美国安全中心研究员格雷戈里·艾伦在其主笔的一份题为《人工智能与国家安全》的报告中强调:“人工智能对国家安全领域带来的影响将是革命性的,而不仅仅是与众不同的。世界各国政府将会考虑制定非凡的政策,可能会像核武器刚出现时一样彻底。”

纵观历史,世界历次军事变革经历了从冷兵器时代、热兵器时代、机械化时代到信息化时代的发展历程,从冶炼技术到火药技术、机械化技术、原子能技术,再到信息技术,四次军事革命的发生都贯穿着技术革命的核心作用。“人工智能逐步走向战场,势必会引起武器装备、作战样式、部队体制编制和战斗力生成模式显著更新,进而引发一场深刻的军事革命。”面对人工智能在国防领域的发展态势,朱启超表示。

在朱启超看来,人工智能的国防运用需求非常广阔。当下,战争形态由机械化、信息化向智能化转型的趋势愈发明显,夺取未来战争的胜利越来越取决于军队的信息优势、智力资源和决策速度。而人工智能在减少战场人员数量、获取和分析情报信息、快速决策和反应等方面具有巨大的潜力。2016年,美国辛辛那提大学研发的人工智能程序“阿尔法”在模拟空战中击败了美军资深飞行员,人工智能技术对于军事革命的颠覆性意义已初步显现。

“人工智能越来越成为推进国防和军队信息化建设的重要驱动力,不断提升国防领域的信息处理能力、指挥控制效率、精确打击能力和精准管理保障能力。”朱启超对人工智能提升国防领域智能化运用非常期待,他表示,随着军民融合发展战略的实施推进,人工智能技术、大数据技术、云计算技术等新一代信息技术将在国防领域发挥越来越重要的作用,推动国防和军事智能化水平不断提升。

人工智能 国防 技术
上一篇:比seq2seq模型快90倍!Google推出全新文本编辑模型FELIX 下一篇:人工干预如何提高模型性能?看这文就够了
评论
取消
暂无评论,快去成为第一个评论的人吧

更多资讯推荐

面部识别的利与弊:是福还是祸?

虽然现代技术使面部识别更加精确和安全,但与面部识别隐私问题和监控有关的担忧也在增加。因此,让我们在这篇文章中探讨一下这该技术的利与弊。

Naveen Joshi ·  2021-06-01 16:36:22
人工智能和5G如何结合以实现物联网收入最大化

网络系统通过信令和使用软件以及分析来检测和分类设备非常棘手,并且对有限且日益紧张的网络资源提出了巨大的需求。然而,解决这些问题有一个主要解决方案:采用人工智能、自动化和5G技术。

Jordi Castellvi ·  2021-06-01 13:49:15
MIT团队最新研究,仅靠LiDAR和2D地图实现端到端自动驾驶

最近, MIT 计算机科学与人工智能实验室(CSAIL)团队成功展示了一种基于机器学习的自动驾驶系统,该端到端框架仅使用 LiDAR获取的原始 3D 点云数据和类似于手机上的低分辨率 GPS 地图就能进行自主导航,并且大大提升了鲁棒性。

文龙 ·  2021-06-01 12:47:51
自然语言处理(NLP)的历史及其发展方向

自然语言处理的历史是一个充满曲折的故事。它从徒劳的研究开始,经过多年卓有成效的工作,最后结束于一个我们仍在试图找出该领域极限的时代。今天,让我们来一起探索这一AI科学分支的发展。

佚名 ·  2021-06-01 12:46:26
是福还是祸?人脸识别技术的利与弊

面部识别并不是一项全新的技术,但人工智能和机器学习不断使面部识别变得更好。苹果通过引入具有 3D 扫描功能的面部生物识别系统和 iPhone 的 Face ID,提高了面部识别的标准。

Naveen Joshi ·  2021-06-01 11:11:01
人工智能能否使机器具有流体智力?

麻省理工学院和奥地利研究人员为灵活的人工智能创造了“液体”机器学习。

千家网 ·  2021-06-01 10:38:55
大脑模拟NLP,高德纳奖得主:神经元集合演算用于句子解析

一个简单的大脑模型为人工智能研究提供了新的方向。世界顶尖计算机科学理论学家、哥德尔奖和高德纳奖获得者、哥伦比亚大学计算机科学教授 Christos Papadimitriou 关于「大脑中单词表征」的演讲。

Ben Dickson ·  2021-06-01 09:39:24
美城市Baltimore可能颁布最严格的面部识别禁令

据介绍,拟议的法令将禁止私人或商业组织,甚至执法机构在城市使用面部识别技术。

千家网 ·  2021-06-01 09:34:07
Copyright©2005-2021 51CTO.COM 版权所有 未经许可 请勿转载