自然语言处理(NLP)的历史及其发展方向

作者: 佚名 2021-06-01 12:46:26

自然语言处理的历史是一个充满曲折的故事。它从徒劳的研究开始,经过多年卓有成效的工作,最后结束于一个我们仍在试图找出该领域极限的时代。今天,让我们来一起探索这一AI科学分支的发展。

自然语言处理 (NLP) 的起源——这个想法是如何诞生的?

自然语言处理起源于 1940 年代后期,当时构建了第一个 AI 系统。他们必须处理自然语言并识别单词才能理解人类命令。 1950 年,艾伦·图灵发表了一篇论文,描述了第一个机器翻译算法。算法过程侧重于编程语言的形态学、句法和语义。论文的题目是“计算机与智能”。图灵写了更多关于自然语言的研究论文,但他在这方面的工作并没有继续。

1959年,他写了一篇论文《论可计算数》。引入了人工智能的思想来解决人类无法自己解决的问题。该算法处理信息并执行超出人类能力或时间限制的任务,例如以闪电般的速度下棋。

自然语言处理 (NLP) 的诞生——谁让它成为可能?

1956 年,John McCarthy 发表了一份报告,描述了如何使用自然语言与 AI 系统进行通信。 1957年,他创造了“人工智能”一词。 1958 年,他发表了一篇论文,描述了 SOLO 自然语言句子处理程序。

1959 年,Frank Rosenblatt 创建了第一个感知器(神经网络)。这些网络旨在处理信息并解决模式识别或分类任务中的问题。 1962 年,在 Marvin Minsky 和Seymour Papert 写了他们成功的书“感知器”之后,这些人工神经元被广泛使用。

1966 年,一家名为 General Automation Incorporated 的人工智能公司成立,专注于自然语言处理和模式识别。

自然语言处理 (NLP) 的演变 - 发生了哪些变化?

随着时间的推移,不同的分析方法逐渐发展起来。爱丁堡大学和康奈尔大学的科学家于 1964 年创建了一个计算模型。 第一个可以与人交谈的计算机程序是 ELIZA,它由麻省理工学院的 Joseph Weizenbaum 于 1966 年创建。

1966年,召开了第一届计算机语音和语言处理专业会议。 1967 年,一个俄语机器翻译程序可供使用英语的科学家阅读苏联科学发现。

自然语言处理 (NLP) 的发展 - 它是如何演变的?

直到 1979 年才又迈出了一大步,正是在这一年,第一个简单的英语“聊天机器人”诞生了。

1984 年,IBM 的新产品“chatterbox”可以用自然语言与人交谈,它使用早期版本的对话管理系统为用户过滤掉无趣的对话。

之后,在 1987 年,罗伯特·尚克(Robert Schank)创建的一个名为 PARRY 的程序能够与精神科医生进行对话,但无法回答有关自己生活的问题。

1990 年,ELIZA 和 Parry 被认为是人工智能的“微不足道”例子,因为他们使用了无法像人类那样真正思考或理解自然语言的简单模式匹配技术。我们仍然无法创建一个能够令人信服地通过图灵测试的聊天机器人。

1994 年,统计机器翻译在自然语言处理方面取得了重大突破,它使机器的阅读速度比人类快 400 倍,但仍然不如人类翻译。

几年后,1997 年自然语言处理取得重大突破,引入了一种解析和理解语音的算法,该算法被称为人工智能领域的顶级成就之一。

2006 年,谷歌推出了无需人工干预的翻译功能,该功能使用统计机器学习,通过阅读数百万文本,将 60 多种语言的单词翻译成其他语言。接下来的几年,算法得到改进,现在谷歌翻译可以翻译 100 多种语言。

2010 年,IBM 宣布开发了一个名为 Watson 的系统,该系统能够理解自然语言中的问题,然后使用人工智能根据维基百科提供的信息给出答案。它还击败了危险的两个人类冠军!

之后在 2013 年,微软推出了一款名为 Tay 的聊天机器人。它的创建是为了从 Twitter 和其他平台上与人类的互动中学习,以便让人们在线参与,但没过多久,该机器人就开始发布令人反感的内容,导致其在存在 16 小时后关闭。

现在,在2021 年,机器学习的炒作达到了顶峰。

自然语言处理 (NLP) 的局限性是什么?

其中之一是改进交互式对话系统中的自然语言处理,其中包括基于知识的对话和对话代理,例如 Siri 或 Alexa——我们每天使用的这些助手。然而,在它们能够像人类一样做出反应之前,还有很长的路要走。

另一个限制是,大多数机器学习算法并不打算用于聊天机器人等实时情况,而是用于离线处理具有大量输入变量和训练数据集的数据集——这意味着仍然没有办法预测未来事件或每种可能的情况。

我们想通过自然语言处理 (NLP) 实现什么?

科学家们希望创建能够理解句子的含义和意图的算法,并且尽可能少地使用单词。他们打算创建一套算法,能够掌握句子的含义和意图,以便从中提取信息。这就是为什么我们想要通过自然语言处理实现的目标仍然没有限制,只要它支持人类日常生活中的活动。他们说,开发 NLP(自然语言处理)对日常生活中的人类有很大帮助。 NLP 的发展背后有一些威胁,但也有很多机会。

自然语言处理帮助人们在日常生活中更流利地说话和阅读,并让他们打字的速度比在键盘上写句子的速度更快。但主要威胁之一是,一些专家表示,开发自然语言处理将使人类失业,因为他们将被机器取代。

然而,也有人说自然语言处理会给人类带来前所未有的新工作和机会,因为它太复杂了。这意味着只要 NLP 的发展支持人类日常生活中的活动,那么我们可能就可以通过这项技术找到限制与自由之间的边界。

人工智能 机器人 机器学习
上一篇:MIT团队最新研究,仅靠LiDAR和2D地图实现端到端自动驾驶 下一篇:人工智能和5G如何结合以实现物联网收入最大化
评论
取消
暂无评论,快去成为第一个评论的人吧

更多资讯推荐

面部识别的利与弊:是福还是祸?

虽然现代技术使面部识别更加精确和安全,但与面部识别隐私问题和监控有关的担忧也在增加。因此,让我们在这篇文章中探讨一下这该技术的利与弊。

Naveen Joshi ·  2021-06-01 16:36:22
人工智能和5G如何结合以实现物联网收入最大化

网络系统通过信令和使用软件以及分析来检测和分类设备非常棘手,并且对有限且日益紧张的网络资源提出了巨大的需求。然而,解决这些问题有一个主要解决方案:采用人工智能、自动化和5G技术。

Jordi Castellvi ·  2021-06-01 13:49:15
MIT团队最新研究,仅靠LiDAR和2D地图实现端到端自动驾驶

最近, MIT 计算机科学与人工智能实验室(CSAIL)团队成功展示了一种基于机器学习的自动驾驶系统,该端到端框架仅使用 LiDAR获取的原始 3D 点云数据和类似于手机上的低分辨率 GPS 地图就能进行自主导航,并且大大提升了鲁棒性。

文龙 ·  2021-06-01 12:47:51
是福还是祸?人脸识别技术的利与弊

面部识别并不是一项全新的技术,但人工智能和机器学习不断使面部识别变得更好。苹果通过引入具有 3D 扫描功能的面部生物识别系统和 iPhone 的 Face ID,提高了面部识别的标准。

Naveen Joshi ·  2021-06-01 11:11:01
人工智能能否使机器具有流体智力?

麻省理工学院和奥地利研究人员为灵活的人工智能创造了“液体”机器学习。

千家网 ·  2021-06-01 10:38:55
大脑模拟NLP,高德纳奖得主:神经元集合演算用于句子解析

一个简单的大脑模型为人工智能研究提供了新的方向。世界顶尖计算机科学理论学家、哥德尔奖和高德纳奖获得者、哥伦比亚大学计算机科学教授 Christos Papadimitriou 关于「大脑中单词表征」的演讲。

Ben Dickson ·  2021-06-01 09:39:24
美城市Baltimore可能颁布最严格的面部识别禁令

据介绍,拟议的法令将禁止私人或商业组织,甚至执法机构在城市使用面部识别技术。

千家网 ·  2021-06-01 09:34:07
当“追风筝的人”遇上了无人机……

随着我国用电需求的不断增长,电网建设的持续扩大,“追风筝的人”愈发力不从心。在逐渐增大的电力运维压力面前,电力工人由于作业效率、范围、成本、安全性和作业环境等方面的限制,愈发难以满足行业发展需求。在此背景下,无人机带来了福音。

智能制造网 ·  2021-05-31 20:48:45
Copyright©2005-2021 51CTO.COM 版权所有 未经许可 请勿转载